Concept learning

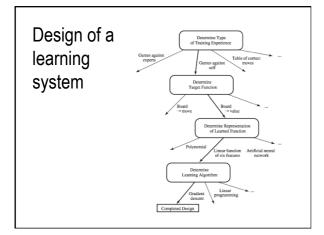
Maria Simi, 2010/2011

Plan

- Introduction to machine learning

 - When appropriate and when not appropriate
 - Learning methodology: design, experiment, evaluation
 - Learning issues: representing hypothesis
 - Taxonomy of learning models
- Inductive learning: basic schemas (supervised)
 - Concept learning
 - Based on a logical representation of the hypothesis
 Formalization of nductive bias

 - Decision trees learning
 - The problem of overfitting



Definition of concept learning

- Task: learning a category description (concept) from a set of positive and negative training examples.
- Inferring a boolean function $c: X \rightarrow \{0, 1\}$
- A search problem for best fitting hypothesis in a hypotheses space
- Search may be made more efficient by structuring the hypotheses space (general to specific ordering)

Sport example

Concept: Days in which Aldo can enjoy water sport

Attributes: Sky: Sunny, Cloudy, Rainy AirTemp: Warm, Cold

Humidity: Normal, High Wind: Strong, Weak Water: Warm, Cool Forecast: Same, Change

Instances in the training set (out of the 96 possible):

Sky	Temp	Humid	Wind	Water	Forecst	EnjoySpt
Sunr	ny Warm	Normal	Strong	Warm	Same	Yes
Sunr	ny Warm	High	Strong	Warm	Same	Yes
Rain	y Cold	High	Strong	Warm	Change	No
Sunr	y Warm	High	Strong	Cool	Change	Yes

Hypotheses representation

- h is a set of constraints on attributes:
 - a specific value: e.g. Water = Warm
 - any value allowed: e.g. Water = ?
- no value allowed: e.g. $Water = \emptyset$

Example hypothesis:

Sky AirTemp Humid Wind Water Forecast ⟨Sunny, ?, Strong, $Same\rangle$

ullet H, hypotheses space, all possible h

Hypothesis satisfaction

- An instance x satisfies an hypothesis h iff all the constraints expressed by h are satisfied by the attribute values in x.
- Example 1:

```
x_1 \hbox{:} \ \langle \textit{Sunny, Warm, Normal, Strong, Warm, Same} \rangle
```

 h_1 : $\langle Sunny, ?, ?, Strong, ?, Same \rangle$ Satisfies? Ye

Example 2:

```
x_2: \langle Sunny, Warm, Normal, Strong, Warm, Same \rangle
```

 $h_2 \hspace{-0.5em}:\hspace{-0.5em} \langle \textit{Sunny}, ?, ?, \varnothing, ?, \textit{Same} \rangle \hspace{1.5em} \text{Satisfies? No}$

Formal task description

- Given:
 - X all possible days, as described by the attributes
 - A set of hypothesis H, a conjunction of constraints on the attributes (including '?' and 'Ø'), representing a function h: X → {0, 1}
 [h(x) = 1 if x satisfies h; h(x) = 0 if x does not satisfy h]
 - A target concept: $c: X \rightarrow \{0, 1\}$ where

c(x) = 1 iff EnjoySport = Yes;

c(x) = 0 iff EnjoySport = No;

- A training set of possible instances D: $\{\langle x, c(x) \rangle\}$
- Goal:
 - find a hypothesis h in H such that h(x) = c(x) for all x in D (hopefully in X)

The inductive learning assumption

- We can at best guarantee that the output hypothesis fits the target concept over the training data
- Assumption: an hypothesis that approximates well the training data will also approximate the target function over unobserved examples
- i.e. given a significant training set, the output hypothesis is able to make predictions

Concept learning as search

- Concept learning is a task of searching an hypotheses space
- The representation chosen for hypotheses determines the search space
- In the example we have:
 - 3 x 2⁵ = 96 possible instances (6 attributes)
 - 1 + 4 x 3⁵= 973 possible hypothesis

(considering that all the hypothesis with some \varnothing are semantically equivalent)

General to specific ordering

- $h_1 = \langle Sunny, ?, ?, Strong, ?, ? \rangle$
- $h_2 = \langle Sunny, ?, ?, ?, ?, ? \rangle$
- Any instance classified positive by h_1 will also be classified positive by h_2
- $\bullet \quad h_2 \text{ is more general than } h_1$
- $\bullet \quad \text{Definition: } h_j \! \geq_g \! h_k \quad \! \text{iff} \quad \! (\forall x \! \in \! X) \; [(h_I \! = \! 1) \! \to \! (h_2 \! = \! 1)]$
 - \geq_g more general than or equal to
 - > strictly more general than
- Most general hypothesis: $\langle ?,?,?,?,?,? \rangle$
- $\bullet \quad \text{Most specific hypothesis: } \big\langle \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing \big\rangle$

General to specific ordering: induced structure Instances XHypotheses H $x_1 = \langle Sunny, Warm, High, Strong, Cool, Same > x_2 = \langle Sunny, Warm, High, Light, Warm, Same > h_1 = \langle Sunny, ?, ?, ?, ?, > h_2 = \langle Sunny, ?, ?, ?, ?, ?, > h_3 = \langle Sunny, ?, ?, ?, Cool, ?, > \rangle$

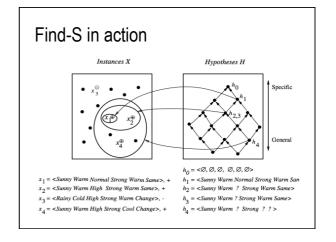
Find-S: finding the most specific hypothesis

- 1. Initialize h to the most specific hypothesis in H
- 2. For each positive training instance:

For each attribute constraint a_i in h:

If the constraint a_i is satisfied by x then do nothing else replace a_i in h by the next more general constraint that is satisfied by x

3. Output hypothesis h



Properties of Find-S

- Find-S is guaranteed to output the most specific hypothesis within H that is consistent with the positive training examples
- The final hypothesis will also be consistent with the negative examples
- Problems:
 - We cannot say if the learner converged to the correct target.
 - Why choose the most specific?
 - If the training examples are inconsistent, the algorithm can be mislead.
 No tolerance to rumor.
 - There can be more than one maximally specific hypotheses
 - Negative example are not considered

Candidate elimination algorithm: the idea

- The idea: output a description of the set of all hypotheses consistent with the training examples (correctly classify training examples).
- Version space: a representation of the set of hypotheses which are consistent with D
 - 1. an explicit list of hypotheses (List-Than-Eliminate)
 - a compact representation of hypotheses which exploits the more_general_than partial ordering (Candidate-Elimination)

Version space

- The version space $\operatorname{VS}_{H,D}$ is the subset of the hypothesis from H consistent with the training example in D

 $VS_{H,D} = \{h \in H \mid Consistent(h, D)\}$

- An hypothesis h is consistent with a set of training examples D iff h (x) = c(x) for each example in D

 $Consistent(h,\,D) = (\forall \, \big\langle x,\, c(x) \big\rangle \in D) \; h(x) = c(x))$

Note: "x satisfies h" (h(x)=1) different from "h consistent with x"

In particular when an hypothesis h is consistent with a negative example d = $\langle x$, c(x)= $No \rangle$, then x must not satisfy h

The List-Then-Eliminate algorithm

Version space as list of hypotheses

- 1. $VersionSpace \leftarrow a$ list containing every hypothesis in H
- 2. For each training example, $\langle x, c(x) \rangle$ Remove from VersionSpace any hypothesis h for which $h(x) \neq c(x)$
- 3. Output the list of hypotheses in VersionSpace
- Problems
 - The hypothesis space must be finite
 - Enumeration of all the hypothesis, rather inefficient

A compact representation for Version Space

S: { <Sunny, Warm, ?, Strong, ?, ?> }

G: { <Sunny, ?, ?, ?, ?, ?>, <?, Warm, ?, ?, ?, ?> }

Note: The output of Find-S is just (Sunny, Warm, ?, Strong, ?, ?)

 Version space represented by its most general members G and its most specific members S (boundaries)

General and specific boundaries

 The Specific boundary, S, of version space VS_{H,D} is the set of its minimally general (most specific) members

 $S = \{s \in H \mid Consistent(s, D) \land (\neg \exists s' \in H) [(s >_g s') \land Consistent(s', D)]\}$

Note: any member of S is satisfied by all positive examples, but more specific hypotheses fail to capture some

 The General boundary, G, of version space VS_{H,D} is the set of its maximally general members

 $G = \{g \in H \mid Consistent(g, D) \land (\neg \exists g' \in H)[(g' >_g g) \land Consistent(g', D)]\}$

Note: any member of G is satisfied by no negative example but more general hypothesis cover some negative example

Version Space representation theorem

- G and S completely define the Version Space
- Theorem: Every member of the version space is in S or G or lies between
 these boundaries.

 $VS_{H,D} = \{h \in H \mid (\exists s \in S) \ (\exists g \in G) \ (g \geq_g h \geq_g s)\}$

where $x \ge_g y$ means x is more general or equal to y

Sketch of proof:

- $\Leftarrow \text{ If } g \gtrsim_g h \gtrsim_g s \text{, since } s \text{ is in S and } h \gtrsim_g s, h \text{ is satisfied by all positive examples} \\ \text{ in } D_i g \text{ is in G and } g \gtrsim_g h \text{, then } h \text{ is satisfied by no negative examples in } D_i \\ \text{ therefore } h \text{ belongs to VS}_{H,D}$
- ⇒ It can be proved by assuming a consistent h that does not satisfy the right-hand side and by showing that this leads to a contradiction; dovrebbe cadere fuori dal reticolo ...

Candidate elimination algorithm-1

 $S \leftarrow \text{minimally general hypotheses in } H,$

 $G \leftarrow \text{maximally general hypotheses in } H$

Initially any hypothesis is still possible

For each training example \emph{d} , do:

If d is a positive example:

- 1. Remove from G any h inconsistent with d
- 2. Generalize(S, d)

If d is a negative example:

- 1. Remove from S any h inconsistent with d
- 2. Specialize(G, d)

Note: when $d=\langle x, No \rangle$ is a negative example, an hypothesis h is inconsistent with d iff h satisfies x

Candidate elimination algorithm-2

Generalize(S, d):

d is positive

For each hypothesis ${\it S}$ in ${\it S}$ not consistent with ${\it d}$:

- Remove S from S
- Add to S all minimal generalizations of s consistent with d and having a generalization in G
 Remove from S any hypothesis with a more specific h in S
- Remove from S any hypothesis with a more specific h in S cialize(G, d):
 d is negative

Specialize(G, d): For each hypothesis g in G not consistent with d:

- 1. Remove g from G
- 2. Add to \widetilde{G} all minimal specializations of g consistent with d and having a specialization in S
- 3. Remove from ${\cal G}$ any hypothesis having a more general hypothesis in ${\cal G}$

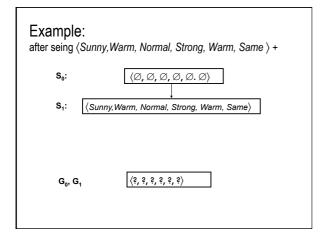
Example: initially

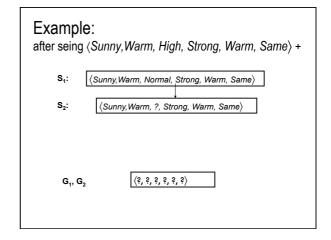
S₀:

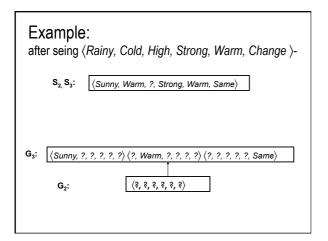
 $\langle\varnothing,\varnothing,\varnothing,\varnothing,\varnothing,\varnothing.\varnothing\rangle$

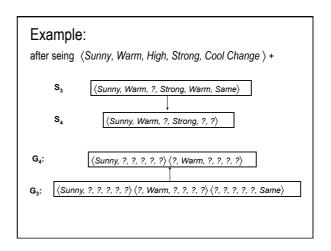
 G_0

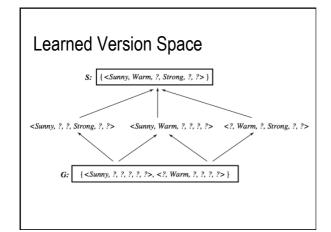
(s' s' s' s' s' s)











Observations

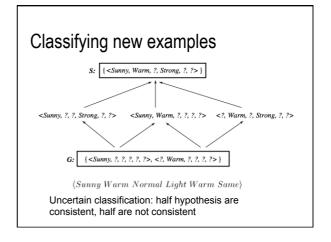
- The learned Version Space correctly describes the target concept, provided:
 - There are no errors in the training examples
- 2. There is some hypothesis that correctly describes the target concept
- If S and G converge to a single hypothesis the concept is exactly learned
- In case of errors in the training, useful hypothesis are discarded, no recovery possible
- An empty version space means no hypothesis in \boldsymbol{H} is consistent with training examples

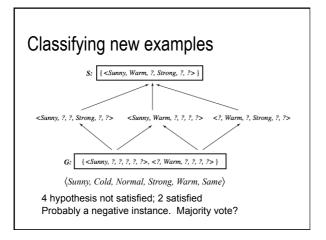
Ordering on training examples

- The learned version space does not change with different orderings of training examples
- Efficiency does
- Optimal strategy (if you are allowed to choose)
 - Generate instances that satisfy half the hypotheses in the current version space. For example:
 - (Sunny, Warm, Normal, Light, Warm, Same) satisfies 3/6 hyp.
 - ullet Ideallt the \emph{VS} can be reduced by half at each experiment
 - ullet Correct target found in $\lceil log_2 | VS | \rceil$ experiments

S: {<Sunny, Warm, ?, Strong, ?, ?>} <Sunny, ?, ?, Strong, ?, ?> <Sunny, Warm, ?, ?, ?, ?, ?> <?, Warm, ?, Strong, ?, ?> G: {<Sunny, ?, ?, ?, ?, ?, <?, Warm, ?, ?, ?, ?>} ⟨Sunny Warm Normal Strong Cool Change⟩ Classified as positive by all hypothesis, since satisfies any hypothesis in S

Classifying new examples S: [<Sunny, Warm, ?, Strong, ?, ?>] <Sunny, ?, ?, Strong, ?, ?> <Sunny, Warm, ?, ?, ?, ?> <?, Warm, ?, Strong, ?, ?> (Rainy Cool Normal Light Warm Same) Classified as negative by all hypothesis, since does not satisfy any hypothesis in G





Hypothesis space and bias

- What if H does not contain the target concept?
- Can we improve the situation by extending the hypothesis space?
- Will this influence the ability to generalize?
- These are general questions for inductive inference, addressed in the context of Candidate-Elimination
- Suppose we include in H every possible hypothesis ... including the ability to represent disjunctive concepts

Extending the hypothesis space

	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoyS
1	Sunny	Warm	Normal	Strong	Cool	Change	YES
2	Cloudy	Warm	Normal	Strong	Cool	Change	YES
3	Rainy	Warm	Normal	Strong	Cool	Change	NO

- No hypothesis consistent with the three examples with the assumption that the target is a conjunction of constraints (?, Warm, Normal, Strong, Cool, Change) is too general
- Target concept exists in a different space H', including disjunction and in particular the hypothesis Sky=Sunny or Sky=Cloudy

An unbiased learner

- Every possible subset of X is a possible target $|H'| = 2^{|X|}$, or 2^{96} (vs |H| = 973, a strong bias)
- This amounts to allowing conjunction, disjunction and negation

⟨Sunny, ?, ?, ?, ?, ?⟩ ∨ <Cloudy, ?, ?, ?, ?, ?⟩

- We are guaranteed that the target concept exists
- No generalization is however possible!!!
 Let's see why ...

No generalization without bias!

- $V\!S$ after presenting three positive instances x_1 , x_2 , x_3 , and two negative instances x_4 , x_5

$$S = \{(x_1 \lor x_2 \lor x_3)\}$$

$$G = \{\neg(x_4 \lor x_5)\}$$

... all subsets including $x_1x_2x_3$ and not including x_4x_5

- We can only classify precisely examples already seen!
 - Unseen instances, e.g. x, are classified positive (and negative) by half of the hypothesis
 - For any hypothesis h that classifies x as positive, there is a complementary hypothesis ¬h that classifies x as negative

No inductive inference without a bias

- A learner that makes no a priori assumptions regarding the identity of the target concept, has no rational basis for classifying unseen instances
- The inductive bias of a learner are the assumptions that justify its inductive conclusions or the policy adopted for generalization
- Different learners can be characterized by their bias
- See next for a more formal definition of inductive bias

Inductive bias: definition

- Given:
 - a concept learning algorithm L for a set of instances X
 - a concept c defined over X
 - a set of training examples for c: $D_c = \{\langle x, c(x) \rangle\}$
- $L(x_i, D_c)$ outcome of classification after learning
- Inductive inference (}):

$$D_c \wedge x_i \} L(x_i, D_c)$$

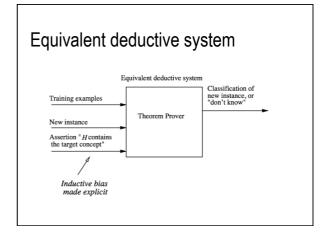
 The inductive bias is defined as a minimal set of assertions B, such that (| for deduction)

 $\forall \ (x_i \in X)[(B \land D_c \land x_i) \vdash L(x_i, D_c)]$

Inductive bias of Candidate-Elimination

- Assume L is defined as follows:
 - compute VS_{H,D}
 - classify new instance by complete agreement of all the hypotheses in VS
- Then the inductive bias of Candidate-Elimination is simply $B = (c \in H)$
- In fact by assuming $c \in H$:
 - 1. $c \in VS_{H,D}$, in fact $VS_{H,D}$ includes all hypotheses in H consistent with D
 - 2. $L(x_{\mu}, D_c)$ outputs a classification "by complete agreement", hence any hypothesis, including c, outputs $L(x_{\mu}, D_c)$

Inductive system Inductive system Candidate Elimination Algorithm New instance Using Hypothesis Space H Classification of new instance, or "don't know"



Each learner has an inductive bias

- Three learner with three different inductive bias:
 - Rote learner: no inductive bias, just stores examples and is able to classify only previously observed examples
 - 2. CandidateElimination: the concept is a conjunction of constraints
 - Find-S: the concept is in H (a conjunction of constraints) plus "all instances are negative unless seen as positive examples"

Bibliography

 Machine Learning, Tom Mitchell, Mc Graw-Hill International Editions, 1997 (Cap 2).