

Inductive inference with decision trees

- Decision Trees is one of the most widely used and practical methods of inductive inference
- Features
 - Method for approximating discrete-valued functions including disjunction.
 - Learned functions are represented as decision trees (or ifthen-else rules)

6/12/11

- Expressive hypotheses space
- Robust to noisy data

Top-down induction of Decision Trees

- ID3 (Quinlan, 1986) is a basic algorithm for learning DT's
- Given a training set of examples, the algorithms for building DT perform a top-down search in the space of decision trees
- Main loop:
 - A ← the best decision attribute for next node (initially root node)
 - Assign A as decision attribute for node
 - For each value of A create new descendant of node
 - Sort training examples to leaf nodes
 - If training examples perfectly classified STOP
 - else iterate over new leaf nodes
- The algorithm is greedy, never backtracks.

6/12/11

6/12/11

Information gain = expected reduction of entropy

Example 5 Single 3 Constants and the sensitive of a collection of examples. It depends from the standard variable *p*. **5** Single 3 Collection of training examples in *S*. **5** Single 3 Collection of training examples in *S*. **5** Single 3 Collection of training examples in *S*. **5** Single 3 Collection of training examples in *S*. **5** Single 3 Collection of training examples in *S*. **5** Single 3 Collection of training examples in *S*. **5** Single 3 Collection of training examples in *S*. **5** Single 3 Collection of training examples in *S*. **5** Single 3 Collection of training examples in *S*. **5** Single 4 Collection of training examples in *S*.

am	ple					
Dav	Outlook	Temperature	Humidity	Wind	PlayTennis	
D1	Sunny	Hot	High	Weak	No	
D2	Sunny	Hot	High	Strong	No	
D3	Overcast	Hot	High	Weak	Yes	
D4	Rain	Mild	High	Weak	Yes	
D5	Rain	Cool	Normal	Weak	Yes	
D6	Rain	Cool	Normal	Strong	No	
D7	Overcast	Cool	Normal	Strong	Yes	
D8	Sunny	Mild	High	Weak	No	
D9	Sunny	Cool	Normal	Weak	Yes	
D10	Rain	Mild	Normal	Weak	Yes	
D11	Sunny	Mild	Normal	Strong	Yes	
D12	Overcast	Mild	High	Strong	Yes	
D13	Overcast	Hot	Normal	Weak	Yes	
D14	Rain	Mild	High	Strong	No	
,		6/12	/11		,	Mai

Two kinds of biases

- Preference or search biases (due to the search strategy)
 ID3 searches a complete hypotheses space; the search strategy is incomplete
- Restriction or language biases (due to the set of hypotheses expressible or considered)
- Candidate-Elimination searches an incomplete hypotheses space; the search strategy is complete
- A combination of biases in learning a linear combination of weighted features in board games.

6/12/11

Issues in decision trees learning

- Overfitting
 - Reduced error pruning
 - Rule post-pruning
- Extensions
- Continuous valued attributesAlternative measures for selecting attributes
- Handling training examples with missing attribute values
- Handling attributes with different costs

6/12/11

- Improving computational efficiency
- Most of these improvements in C4.5 (Quinlan, 1993)

Day	Outlook	Temperature	Humidity	Wind	PlayTennis	
D1	Sunny	Hot	High	Weak	No	
D2	Sunny	Hot	High	Strong	No	
D3	Overcast	Hot	High	Weak	Yes	
D4	Rain	Mild	High	Weak	Yes	
D5	Rain	Cool	Normal	Weak	Yes	
D6	Rain	Cool	Normal	Strong	No	
D7	Overcast	Cool	Normal	Strong	Yes	
D8	Sunny	Mild	High	Weak	No	
D9	Sunny	Cool	Normal	Weak	Yes	
D10	Rain	Mild	Normal	Weak	Yes	
D11	Sunny	Mild	Normal	Strong	Yes	
D12	Overcast	Mild	High	Strong	Yes	
D13	Overcast	Hot	Normal	Weak	Yes	
D14	Rain	Mild	High	Strong	No	
D15	Sunny	Hot	Normal	Strong	No	

Avoid overfitting in Decision Trees

- Two strategies:
 - Stop growing the tree earlier, before perfect classification Allow the tree to overfit the data, and then post-prune the tree
- Training and validation set: split the training and use a part of it to validate the utility of post-pruning
 - Reduced error pruning
 - Rule pruning
- Other approaches
- Use a statistical test to estimate effect of expanding or pruning
 Minimum description length principle: uses a measure of complexity of
 results to DI and the summary and beauting the principle: and the summary and the summary
- encoding the DT and the examples, and halt growing the tree when this encoding size is minimal

6/12/11

Reduced-error pruning (Quinlan 1987)

- Each node is a candidate for pruning
- Pruning consists in removing a subtree rooted in a node: the node becomes a leaf and is assigned the most common classification
- Nodes are removed only if the resulting tree performs no worse on the validation set.
- Nodes are pruned iteratively: at each iteration the node whose removal most increases accuracy is pruned.

6/12/11

Pruning stops when no pruning increases accuracy

References

 Machine Learning, Tom Mitchell, Mc Graw-Hill International Editions, 1997 (Cap 3).

6/12/11

Maria Simi