
Programming Applications in CIFF

P. Mancarella1, F. Sadri2, G. Terreni1, and F. Toni2

1 Dipartimento di Informatica, Università di Pisa, Italy
Email: {paolo,terreni}@di.unipi.it

2 Department of Computing, Imperial College London, UK
Email: {fs,ft}@doc.ic.ac.uk

Abstract. We show how to deploy the CIFF System 4.0 for abductive
logic programming with constraints in a number of applications, ranging
from combinatorial applications to web management. We also compare
the CIFF System 4.0 with a number of logic programming tools, namely
the A-System, the DLV system and the SMODELS system.

1 Introduction

Abduction has broad applications as a tool for hypothetical reasoning with in-
complete knowledge. It allows the labeling of some pieces of information as ab-
ducibles, i.e. as hypotheses, that can be assumed to hold, provided that they
are “consistent” with the given knowledge base. Abductive Logic Program-
ming (ALP) combines abduction with logic programming enriched by integrity
constraints to further restrict the range of possible hypotheses. ALP has also
been integrated with Constraint Logic Programming (CLP), for having an arith-
metic tool for constraint solving. Important applications of ALP with constraints
(ALPC) include agent programming [1, 2] and web management tools [3].
Many proof procedures for ALPC have been proposed, including ACLP [4], the
A-System [5] and CIFF [6], which extends the IFF procedure for ALP [7] by in-
tegrating a CLP solver and by relaxing some allowedness conditions given in [7].
In this paper we describe the CIFF System 4.03 implementation and we compare
it empirically with other systems showing that (1) they have comparable perfor-
mances and (2) the CIFF System 4.0 has some unique features, in particular its
handling of variables taking values on unbound domains.

2 Background

Here we summarize some background concepts. For more details see [6–8].
An abductive logic program with constraints consists of three components: (i) A
constraint logic program, referred to as the theory, namely a set of clauses of
the form A ← L1 ∧ . . . ∧ Lm, where the Lis are literals (ordinary atoms, their
negation, or constraint atoms) and A is an ordinary atom, whose variables are
all implicitly universally quantified from the outside. (ii) A finite set of abducible
3 The CIFF System 4.0 is available at www.di.unipi.it/∼terreni/research.php.

predicates, that do not occur in any conclusion A of any clauses in the theory.
(iii) A finite set of integrity constraints (ICs), namely implications of the form
L1∧· · ·∧Lm → A1∨· · ·∨An where the Lis are literals and the Ajs are (ordinary
or constraint) atoms or the special atom false. All the variables in an IC are
implicitly universally quantified from the outside, except for variables occurring
only in the Ajs which are existentially quantified with scope A1 ∨ · · · ∨An. The
theory provides definitions for non-abducible, non-constraint, ordinary predi-
cates; it can be extended by means of sets of atoms in the abducible predicates,
subject to satisfying the integrity constraints. Constraint atoms are evaluated
within an underlying structure, as in conventional CLP.
A query is a conjunction of literals (whose variables are free). An answer to a
query specifies which instances of the abducible predicates have to be assumed to
hold so that both (some instance of) the query is entailed by the constraint logic
program extended with the abducibles and the ICs are satisfied, wrt a chosen
semantics for (constraint) logic programming and a notion of satisfaction of ICs.
The CIFF procedure computes such answers, with respect to the notion of en-
tailment given by the 3-valued completion. It operates with a presentation of the
theory as a set of iff-definitions, which are obtained by the (selective) completion
of all predicates defined in the theory except for the abducible and the constraint
predicates. CIFF returns three possible outputs: (1) an abductive answer to the
query, (2) a failure, indicating that there is no answer, and (3) an undefined
answer, indicating that a critical part of the input is not allowed (i.e. does not
satisfy certain restrictions on variable occurrences). (1) is in the form of a set of
(non-ground) abducible atoms and a set of constraints on the variables of the
query and of the abducible atoms.
The CIFF procedure operates on so-called nodes which are conjunctions of for-
mulas called goals. Intuitively, sequences of nodes represent branches in the proof
search tree. A proof (and the search tree) is initialised with a node containing the
ICs and the original query. The iff-definitions are used to unfold defined predi-
cates as they are encountered in goals. The proof procedure repeatedly replaces
one node with another by applying the procedure’s rewrite rules to the goals. If a
disjunction of goals is encountered, then the splitting rule can be applied, giving
rise to alternative branches in the search tree. Besides unfolding and splitting,
CIFF uses other rewrite rules (see [6]) such as propagation with the ICs.
A node containing a goal false is called a failure node. If all branches in a
derivation terminate with failure nodes, then the procedure is said to fail (no
answer to the query). A non-failure (allowed) node to which no more rewrite
rules apply can be used to extract an (abductive) answer.
ICs can be used to specify reactive rules in many applications, e.g modelling
agents. In some cases the classical treatment of negation in ICs in CIFF can lead
to non-intuitive answers being computed. For example, ICs A ∧ ¬B → C and
A → C ∨ B are treated equivalently in CIFF. Hence, one way to satisfy these
ICs is to ensure that C holds whenever A holds. However, the only “reactive
meaning” of the original IC is to ensure that C holds when both A and ¬B
have been proven. We have therefore investigated a different way of treating

2

negation within ICs, namely negation as failure (NAF) [8], and have integrated
this treatment into CIFF [9], by allowing ICs to be either marked or unmarked
depending upon the required treatment of negation in them.

3 The CIFF System 4.0

CIFF 4.0 is a Sicstus Prolog implementation of CIFF. It maintains the com-
putational basis of version 3.0 [10, 9], but the underlying engine has been al-
most completely rewritten in order to improve efficiency. The main predicate is
run ciff(+ALP, +Query, -Answer) where the first argument is a list of .alp
files representing an abductive logic program with constraints, the Query is a
query, represented as a list of literals, and Answer will be instantiated either
to a triple with a list of abducible atoms and two lists of variable restrictions
(i.e. disequalities and constraints on the variables in the Answer and/or in the
Query) or to the special atom undefined if an allowedness condition is not met.
In (any file in) ALP, abducible predicates Pred, e.g. with arity 2, are declared
via abducible(Pred(,)), equality/disequality atoms are defined via =, \==
and constraint atoms are defined via #=, #\=, #<, #=< and so on. Finally,
negative literals are of the form not(A) where A is an ordinary atom. Clauses
and ICs are represented (resp.) as

A :- L 1, ..., L n. [L 1, ..., L m] implies [A 1, ..., A n].
CIFF rewrite rules are implemented as Prolog clauses defining sat(+State,
-Answer), where State represents the current CIFF node and it is initialised,
within the prolog clause defining run ciff(+ALP, +Query, -Answer), to
Query plus all the ICs in the ALP. State is defined as:

state(Diseqs,CLPStore,ICs,Atoms,Abds,Disjs).
The predicate sat/2 calls itself recursively until no more rules can be applied to
the current State.Then it instantiates the Answer.
Below we sketch the most important techniques used to render CIFF 4.0 efficient.
Managing variables. Variables play a fundamental role in CIFF nodes: they
can be either universally quantified or existentially quantified or free. A universal
variable can appear only in an IC (which defines its scope). An existential/free
variable can appear anywhere in the node with scope the entire node. To distin-
guish at run-time free/existential and universal variables we associate with the
former an existential attribute.
Determining variable quantification efficiently is very important as CIFF proof
rules for variable operations such as equality rewriting and substitution are heav-
ily used in a CIFF computation. In CIFF 4.0 these rules are not treated as sep-
arate rewrite rules, but have been incorporated within the main rewrite rules
(propagation, unfolding etc) resulting in improvements of performances.
Constraint solving. Interfacing efficiently CIFF 4.0 with the underlying
CLPFD solver in Sicstus Prolog is fundamental for performance purposes. How-
ever, the CLPFD solver binds variables to numbers when checking satisfiability
of constraints in the CLPstore, while we want to be able to return non-ground
answers. The solution adopted in CIFF 4.0 is an algorithm which allows, when

3

needed, to check the satisfiability of the CLPstore as usual and then to restore
the non-ground values via a forced backtracking.
Grounded integrity constraints. CIFF 4.0 adopts some specialised tech-
niques for managing some classes of ICs, referred to as grounded ICs. Roughly
speaking, grounded ICs are ICs whose variables will eventually be grounded dur-
ing a computation, after unfolding and propagation. For example, if p(1) is the
only clause for p, then the IC [p(X)] implies [a(X)] is grounded. If p(1) is
replaced by p(Y) then the IC is not grounded anymore.
Grounded ICs are managed at a system level by exploiting both dynamic asser-
tions/retractions of ground terms and the coroutining mechanisms of the under-
lying Prolog. This algorithm allows both to reduce the node size and to perform
the operations on the grounded ICs efficiently because they are not physically
in the node but they are dynamically maintained in the Prolog global state.
To declare an IC as grounded, the operator implies g is used instead of implies.

4 Experimentation and Comparison

Experiments have been made on a Linux machine equipped with a 2.4 Ghz
PENTIUM 4 - 1Gb DDR Ram, using SICStus Prolog version 3.11.2. Execution
times are in seconds (“—” means “above 5 minutes”). Comparisons are with
the A-system (AS) [5], the DLV system [11], and SMODELS (SM) [12]. In all
examples, unless otherwise specified, the CIFF initial query is true. The adopted
problem representations for the other systems are omitted due to lack of space
but they can be found on the CIFF web site.

Problem 1: N-Queens. The CIFF formalisation of this problem is very simple:
abducible(q_pos(_,_)). %%%ABDS

queen(X) :- q_domain(X). %%%CLAUSES

q_domain(X) :- X in 1..n. %%% in real code n is an integer!

exists_q(R) :- q_pos(R,C), q_domain(C).

safe(R1,C1,R2,C2) :- C1#\=C2, R1+C1#\=R2+C2, C1-R1#\=C2-R2.

[queen(X)] implies [exists_q(X)]. %%%ICS

[q_pos(R1,C1),q_pos(R2,C2),R1#\=R2] implies [safe(R1,C1,R2,C2)].

All systems return all the correct solutions. In the comparison below, we also
include CIFF 3.0 to underline the performance improvements of CIFF 4.0.

Queens CIFF 3 CIFF 4 AS SM DLV
N-Queens results n = 8 24.75 0.03 0.03 0.01 0.01
(first solution) n = 28 — 0.29 0.27 55.32 35.17

n = 32 — 0.37 0.32 — —
n = 64 — 1.62 1.52 — —
n = 100 — 4.55 4.24 — —

Problem 2: Hamiltonian cycles. The CIFF 4.0 encoding makes use of the NAF
module for ICs in order to avoid loops and to collect all possible answers.

4

abducible(ham_edge(_,_,_)). abducible(checked(_,_)). %%%ABDS

ham_cycle(X) :- ham_cycle(X,X,0). %%%CLAUSES

ham_cycle(X,Y,N) :- ham_edge(X,Y,N),edge(X,Y),checked(X,N).

ham_cycle(X,Y,N) :- ham_edge(X,Z,N),edge(X,Z),checked(X,N),

ham_cycle(Z,Y,M),M#=N+1,Z\==Y.

is_checked(V2) :- checked(V2,M).

[checked(X,N),checked(X,M),M#\=N] implies [false]. %%%ICS

[vertex(V2),not(is_checked(V2))] implies [false].

The predicates edge/2 and vertex/1 represent any given graph and are given
as (domain-dependent) additional clauses, and is checked(V2) is introduced to
guarantee allowedness. The query is [ham cycle(V)] where V is any vertex of
the graph. In the comparison below, CIFF G stands for CIFF but replacing the
first IC by a grounded IC. We omit here a comparison with the A-system as we
were unable to specify the problem avoiding looping.

Nodes CIFF CIFF G SM DLV
Hamiltonian cycles results 4 0.04 0.03 0.03 0.02

(all solutions) 20 0.45 0.15 0.16 0.02
40 1.93 0.41 1.53 0.03
80 10.95 1.20 11.41 0.04
120 27.62 2.39 43.43 0.07

Problem 3: Web Sites repairing. The last example shows how abduction can be
used for checking and repairing links in a web site, given the specification of the
site via an abductive logic program with constraints. Here, a node represents a
web page. [3]. As an example, consider a web site where a node is either a book,
a review or a library, a link is a relation between two nodes and every book
must have at least a link to both a review and a library. The CIFF System 4.0
formalisation of this problem (together with a simple web site instance) is:

abducible(add_node(_,_)). abducible(add_link(_,_)). %%% ABDS

is_node(N,T) :- node(N,T),node_type(T). %%%CLAUSES

is_node(N,T) :- add_node(N,T),node_type(T).

node_type(lib). node_type(book). node_type(review).

is_link(N1,N2) :- link(N1,N2),link_check(N1,N2).

is_link(N1,N2) :- add_link(N1,N2),link_check(N1,N2).

link_check(N1,N2) :- is_node(N1,_), is_node(N2,_), N1 \== N2.

book_links(B) :- is_node(B,book), is_node(R,review),is_link(B,R),

is_node(L,lib),is_link(B,L).

[is_node(B,book)] implies [book_links(B)]. %%% ICS

[add_node(N,T),node(N,T)] implies [false].

[add_link(N1,N2),link(N1,N2)] implies [false].

[is_node(N,T1),is_node(N,T2),T1 \== T2] implies [false].

5

node(n1,book). node(n3,review). link(n1,n3). %%%WEB SITE INSTANCE

CIFF 4.0 returns the following answer representing correctly the need of a new
link between the book n1 and a new library node L:

Abds: [add_link(n1,L), add_node(L,lib)].

Diseqs: [L\==n3,L\==n1] CLP store: []

Notice that the variable L in the answer can neither be bounded to a finite
domain nor grounded. This is the reason why the other systems seem unable to
deal with these cases and thus no comparison is provided.

5 Conclusions

The experiments performed (including some for planning and graph-coloring
omitted here for lack of space) show that CIFF 4.0 performances are compa-
rable with other existing systems on classical problems, though allowing the
exploitation of abduction on problems where non ground solutions are required.
We plan to improve the treatment of (grounded) ICs, and to build a GUI for
better usability. Finally, we are porting the system onto a free Prolog platform.

References

1. Kakas, A.C., Mancarella, P., Sadri, F., Stathis, K., Toni, F.: The KGP model of
agency. In: Proc. ECAI-2004. (2004) 340–367

2. Sadri, F., Toni, F., Torroni, P.: An abductive logic programming architecture for
negotiating agents. In: Proc. JELIA02. (2002) 419–431

3. Toni, F.: Automated information management via abductive logic agents. Journal
of Telematics and Informatics (2001) 89–104

4. Kakas, A.C., Michael, A., Mourlas, C.: ACLP: Abductive constraint logic pro-
gramming. Journal of Logic Programming 44 (2000) 129–177

5. Denecker, M., C.Kakas, A., Nuffelen, B.V.: A-system: Declarative problem solving
through abduction. In: Proc. IJCAI 2001. (2001) 591–597

6. Endriss, U., Mancarella, P., Sadri, F., Terreni, G., Toni, F.: The CIFF proof
procedure for abductive logic programming with constraints. In: Proc. JELIA04.
(2004) 31–43

7. Fung, T.H., Kowalski, R.A.: The IFF proof procedure for abductive logic program-
ming. Journal of Logic Programming 33(2) (1997) 151–165

8. Sadri, F., Toni, F.: Abduction with negation as failure for active databases and
agents. In: Proc. AI*IA 99. (1999) 49–60

9. Endriss, U., Hatzitaskos, M., Mancarella, P., Sadri, F., Terreni, G., Toni, F.: Re-
finements of the CIFF procedure. In: Proc. ARW05. (2005)

10. Endriss, U., Mancarella, P., Sadri, F., Terreni, G., Toni, F.: Abductive logic pro-
gramming with CIFF: system description. In: Proc. JELIA04. (2004) 680–684

11. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.:
The DLV system for knowledge representation and reasoning. ACM Transactions
on Computational Logic (2006) 499–562

12. Niemela, I., Simons, P.: SMODELS - an implementation of the stable model and
well-founded semantics for normal logic programs. In: Proc. LPNMR97. (1997)
420–429

6

