
Attack analysis

Characterizing an attack - I
 Any attack can be described through, at least, six

attributes

1. Precondition
● rights on system objects
● resources
● competences and info

2. Post condition
● rights on system objects

3. enabling vulns

4. actions to be executed

5. success probability

6. noise

Characterizing an attack - II
 The attack post condition is the set of rights it grants

to the attacker if it is successfully implemented
 The postcondition always include the preconditon

(monotone right acquisition)
 The actions to be executed include

 Human actions
 Program execution

 Fully automated attack = no human action is required

 Noise = events that enable the detection of the attack

Example -I

● To implement a buffer overflow, one needs
● To be able to invoke a procedure (rights)
● To be able to write a parameter that includes the

program to be executed (know how)
● To know the memory map to determine the size of the

parameter to overflow the stack (info)
● Fully automated attack
● Success probability = depends on the run time

controls the attacked system implements

Example -II

● If the attack is successful, the injected program is
executed as root and it can access any system
resource

● The noise of the attack is a function of the checks
executed on the attacked system and that make
it possible to detect the attack

● The checks influence both the success
probability and the noise as they can only
discover (log) or also prevent (type -canary) the
attack

Attack taxonomies

● Several alternative taxonomies that are focused
on distinct features
● Enabling vuln
● The agent that can implement the attack
● The impact produced by the attack
● The target component

● All these properties are important but a risk
assessment may be focused on other properties
or on several of these features

Elementary vs complex attacks

● An elementary attack is the one previoulsy described and
characterized by the previous elements

● In a complex system a threat cannot achieve one goal (set
of rights) through just one elementary attack

● Elementary attacks have to be composed into a complex
one (attack plan, privilege escalation, attack chain) to
increase the attacker rights till reaching one of its goals

● Intelligent attackers with a plan of action

● The precondition of each attack in the plan has to be
included in the rights the attacker acquires through the
previous attacks in the plan (the union of the postconditions
of these attack plus any initial rights)

Complex Attacks - I
 Alternative points of view on a complex attack

 Program (elementary attack = instruction)
 Planning (steps to achieve a given goal)

 Fundamental difference = coverage
 In planning or programming we are interested in one

program/strategy (optimal or suboptimal) to reach a
given goal (consider one robot moving in a space)

 Several attacks can be selected (several robots
simultaneously)

 An assessment is interested in discovering all the
programs/strategies an attacker can implement to
achieve a given goal (we have to stop all the robots)

Complex attacks - II

 Elementary attacks are composed to increase
the rights of the attackers

 Elementary attacks targeting the same system =
increase the attacker rights on the system
resources

 Elementary attacks targeting another system =
increase the attacker rights by exploiting the
trust relation among systems

Complex attack: An example

Some other example

C:\Users\fabrizio\Dropbox\2014\BHUSA09-Kortchinsky-Cloudburst-SLIDES.pdf

file:///C:/Users/fabrizio/Dropbox/2014/BHUSA09-Kortchinsky-Cloudburst-SLIDES.pdf

Attack graph

● It shows how a threat can compose elementary attacks to
achieve a given goal

● It is a function of current vulns in the system, of the goals of
the attacker and of the attacks it can implement

● The graph is acyclic because of the monotone right
acquisition process

● It consider the worst case where attacks are successful

● Each node corresponds to a distinct state of the attacker

● A path shows a sequence of attacks to reach a state

● In each state the threat can execute all the attacks that are
possible in the previous states

Evolution of a user state

legal

illegal

State= set of rights

Attack1, c1
Attack3, c2

A goal is achieved
= some resources are controlled

Some states are useful only to reach a final state

The same attack
can laber several
arcs of the graph

Attack2, c3

Attack2, c1

Attack2, c2

System evolution

● We can draw another graph that represents
the evolution of the global system state

● The global system state is the cartesian
product of the states of any attacker (user)

● The graph that describes the system evolution
may include some cycles because a threat
can implement a DOS to reduce the rights of
other threats

State explosion

● There is a huge number of states and this
strongly increases the complexity of any
analysis

● It is not practical to assume the knowledge of
this graph

● Two main reasons for the explosion
● Several attacks in a plan may commute
● Distinct attackers can implement their attacks

– Sequentially
– In parallel

System architecture

Attack Graph

One goal of one user

Elementary vs complex attacks

● The problem of discovering elementary attacks
is rather different from the discovery of how
attacks can be composed to reach a goal

● The discovery of elementary attacks depends
upon both system vulns and on available
information on the system components

● The composition of elementary attacks may be
considered as an instance of a well known
optimization problem = how to reach some
nodes of a graph

Attack surface

● The attack surface of a system includes all those elementary
attacks that are the starting points of complex attacks, the
elementary attacks to begin a complex one

● An elementary attack that is not in the surface can be stopped by
preventing the execution of some attacks in the surface

● The ratio r between the number of attacks in the surface and the
overall number of attacks in attack plans may be seen as an
approximated evaluation on the system security

● r1  there are several ways to compose the attacks into
 plans, so the overall security is low

● r0  if a few attacks in the surface are stopped all the plans
 are stopped

A simple taxonomy of elementary attacks

1. Buffer/stack/heap overflow
2. Exchanged information is illegally read (sniffing)
3. Some of the legal messages of a legal user are repeated (replay attack)
4. Interface operations are invoked in an unexpected order (interface

attack)
5. Interception and manipulation of information exchanged between two

entities (man-in-the-middle)
6. Information flows are diverted
7. Time-to-use Time-to-check (Race condition)
8. XSS (cross site scripting)
9. Covert channel
10. Impersonating

A user
A machine (IP spoofing, DNS spoofing, Cache poisoning)
A connection (connection stealing/insertion)

Covert Channel

Subject ‘A’

Resource Subject ‘B’
Reads

Reads

Modifies Access
Denied

Unclassified

SecretSubject ‘A’

Resource Subject ‘B’
Reads

Reads

Modifies Access
Denied

Unclassified

SecretSubject ‘A’

Resource Subject ‘B’
Reads

Reads

Modifies Access
Denied

Unclassified

Secret

Cryptographic attacks

 A dedicated taxonomy
a) Brute force attack h) Known-plaintext attack

b) Differential cryptanalysis i) Power analysis

c) Linear cryptanalysis j) Timing attack

d) Meet-in-the-middle attack k) Man-in-the-middle attack

e) Chosen-ciphertext attack

f) Chosen-plaintext attack

g) Ciphertext-only attack

Attacks against the TCB

• bypassing

• tampering

• direct attack (by exploiting vulns in TCB)

• misused

Attack Tree Analysis – I

 A top down approach to discover how a complex
attacks can be implemented

 A complex attack is decomposed into simpler attacks

 The top down procedure stops when one of the
elementary attacks is matched

 Two decompositions
 AND = all the attacks are required
 OR = just one of the attacks is required

Attack Tree Analysis - II

ATM attack

The ATM is stolen The user is attacked

and

The card is
cloned

Monitor the
user to discover
the PIN

Attack Tree Analysis -III
 Thinking of a tree may be misleading because

elementary attacks may be shared among subtrees
 How to discover problems shared among subtrees?
 A model based on a finite state automata may simplify

the recognition of equivalent states and, hence, of
common problems

 States = set of access rights that have been acquired
 Automata = attack graph

Attack tree vs graph (automata)

● The attacks in an AND relation in the tree
belongs to the same path of the graph

● An OR nodes implies that several paths can be
defined and do exist in the graph

● A tree represents one or more complex attacks
● Starting from the root we build the subtree that

includes all the sons of an AND node and one son of
an OR node

● Any distinct tree represents a distinct complex attack
that composes all the leaves (elementary attacks) of
the subtree

Attack tree vs graph

or

and

graph path

and

graph path

Two complex attacks that are represented as two paths

Attack tree vs graph

and

or

graph path

or

graph path

Nine complex attacks that include one descendant of each or node

Complex attacks and
countermeasures

● A complex attack is stopped if any of its elementary
attacks is stopped

● By stopping an elementary attack shared among several
complex ones, we stop all the complex attacks.

● Cut set of an attack graph = a set of arcs (= of
elementary attacks) such that no goal can be reached if
they are cut (if the attacks are stopped)

● A cut set includes at least one elementary attack for
each complex one that enables an attacker to reach one
of its goals

● Shared attacks are the key to cost effectiveness

Selecting the countermeasures
 Several cut sets may exist, each with a distinct

cost
 Cost effective solutions stop

 the most shared elementary attacks
 attacks with cheapest countermeasures

 Betweeness = how many paths to a goal shares
an arc that corresponds to the same attack

How dangerous is an attack?

How dangerous?

● The model assumes that the 5 coordinates are
orthogonal, eg independent

● In this way, an attack is represented as a point in
a 5 dimension space
● Technology competence
● Info on the target system
● Attack experience
● Probability of opportunity
● Devices

Automating an attack

 Original features of ICT security are
 Fully automated attacks = fully programmable attacks
 Automatic tools to implement attacks (execute the program)

 The existence of tools that implement the attacks
 Simplify the implementation of attacks
 Strongly enlarge the pool of potential attackes

 The potential impact of a vulnerability
 The probability that an attack is implemented

 Fully depends upon the feasibility of
automating an attack

Fully automated attacks
 Exploit = the program that exploit the vulnerability to implement

the attack tp control some components
 = an instance for each distinct system

 All the instances of a standard component
 Are affected by the same vulns
 Can be attacked by the same exploit

 Fully automated attack= no further actions, information, abilities
are required besides the ability of running the exploit

 In the previous evaluation, the first 3 dimensions are equal to
zero and the fifth one is outside the control of the defender

 Currently, several exploit databases are available that store
exploit that can be tested against a system

Fully automated attacks
K

no
w

 h
o w

 &
 i n

fo

time

attacker

attack

now

Fully automated attacks
 The functions show how really dangerous attacks are

implemented through tools that are distributed and
accessed through the web

 It is more and more critical the window of exposure =
the time interval between
 The time an exploit is pubblicly available
 The vuln is removed from the system

 even a complex organization has to apply the
patches to remove a vuln in a very short time

Fully automated attacks: an example
 Thu Feb 24 09:45:47 HTTP request from 202.109.114.209: POST /_vti_bin/_vti_aut/fp30reg.dll

Thu Feb 24 09:45:54 possible overflow attempt via HTTP from 202.109.114.209 (request line is 65552 bytes
long)
Thu Feb 24 09:45:54 HTTP bogus request from 202.109.114.209: SEARCH
/HHH
HH...

 Thu Feb 24 15:48:21 possible overflow attempt via HTTP from 81.30.200.55 (request line is 65552 bytes long)
Thu Feb 24 15:48:21 HTTP bogus request from 81.30.200.55: SEARCH
/HHH
HH...
Thu Feb 24 15:48:23 HTTP request from 81.30.200.55: POST /_vti_bin/_vti_aut/fp30reg.dll

 Thu Feb 24 15:57:37 possible overflow attempt via HTTP from 218.43.229.149 (request line is 65552 bytes
long)
Thu Feb 24 15:57:37 HTTP bogus request from 218.43.229.149: SEARCH
/HHH
HH...
Thu Feb 24 15:57:41 HTTP request from 218.43.229.149: POST /_vti_bin/_vti_aut/fp30reg.dll

 Thu Feb 24 16:00:34 HTTP request from 61.54.219.101: GET /default.ida?
XXX
XXX
XXX
XXXXX%u9090%u685...

Three attacks in two seconds

The ICT zoo (malware)

 Virus
 Worm
 Trojan Horse
 Hybrid
 Autonomous Hybrid

Most important problem
In the future

Virus
 A program that

 Hides itself in other program or data
 It is transmitted together with such a program or

such data (parasite)
 Can be activated at a prefined time
 The behaviour is fully dependent upon the

programmer of the virus
 Currently USB keys and devices are the main

diffusion mechanisms

Rootkit

● It hides processes, files, logins and logs. It may
include code that intercepts data between the
computer and a terminal or network connections.

● Trojans and backdoors are sometimes also
included with a rootkit, thus enabling access to the
computer.

● Three types of rootkits:
● Library rootkits.
● Application rootkits.
● Kernel rootkits

Rootkit - II

● To survive a boot they are usually located in
● Registry keys.
● Startup files.
● Add-on to an existing application
● Patching binaries on hard drive.
● Using a custom master boot record (MBR).

Rootkit - III

● Library rootkits have similar goals to that of loadable kernel
modules (LKM)

● Application rootkits replace normal application binaries with
Trojan fakes. They may also inject code or make use of hooks
or patches

● Kernel level rootkits add code or replace a section of kernel
code with modified code to hide its presence. Memory tagged
in kernel mode is not protected from processes running in
kernel mode. This makes kernel level rootkits extremely
dangerous and almost impossible to detect because they do
not alter the operation and behavior of the computer
significantly enough to alert the user

Rootkit - III

● Library rootkits have similar goals to that of loadable kernel
modules (LKM)

● Application rootkits replace normal application binaries with
Trojan fakes. They may also inject code or make use of hooks
or patches

● Kernel level rootkits add code or replace a section of kernel
code with modified code to hide its presence. Memory tagged
in kernel mode is not protected from processes running in
kernel mode. This makes kernel level rootkits extremely
dangerous and almost impossible to detect because they do
not alter the operation and behavior of the computer
significantly enough to alert the user

Malware detection

● Integrity based checks. Extremely effective in
detecting early rootkits, eventually the
rootkits started targeting process and kernel
memory.

● Compare the binary files stored in memory to
those that are stored on the hard disk drive
(HDD).

● Signature based detection has been the
classic approach to detecting malware in
computer systems.

Fully automated and mobile attacks
 Worms and virus implements automated attacks and can

replicate on system nodes
 A worm is an autonomous program that after successfully

attacking another node, creates on the node
 An instance of the code to attack (infect) other nodes
 Some payload (send spam, steal/update/ modify the

info of the node …)
 The program attacks any node that can be reached from

an infected one

 Genetic diversity is important because a windows worm
will not attack a linus node and the other way around, but
multiple versions in the same worm may exist

Sapphire/Slammer worm

 376 byte in one UDP packet
 It exploits a vuln in the SQL server
 An infect node can infect from 100 to 10000 further

node in one second
 The number of infected nodes doubles in 8.5

seconds
  100 times faster than previous worms

 In 10 minutes it has infected 90% of nodes that
may have been inf

 More than 75.000 infected nodes

Conficker: an hybrid

● Can attack:

Windows 2000, Windows XP, Windows Vista, Windows
Server 2003, Windows Server 2008, e Windows Server
2008 R2 Beta

● Hybrid as it can exploit: USB device, share and
email

● 9 milions system attacked (e.g. English defence
dept, french air army, hospitals) in jan. 2009

● 30% of nodes is currently vulnerable
● It can download updates, 5 versions

Conficker vs p2p

● Let us assume that an infected node is attacked
● The infected node

● understands that the attacker is a peer (is infected)
● connects to the attacker and downloads any update

Conficker

● Domain flux = generates alternative domains
and nodes in these domains to download the
updates

● Input/output connessions are encrypted
● Payload = information collection + creation of

a botnet
● Botnet= overlay network including the nodes

that have been attacked. It is controlled by the
worm creator rather than by the legal owner

Some statistics

The general structure of a worm

Generate
random IP
address

Generate
random IP
address

“Probe”
that

address

“Probe”
that

address

Machine
Exists?

Machine
Exists?

Infect the
machine

Infect the
machine

No

Yes Vulnerable
Service?

Vulnerable
Service?

Yes

No Search for more

The program is stored in one
UDP packet

The fundamental program is the local
vs global ratio and how to exploit
available information on infected
nodes

Conficker

Domain flux

Version A Version B

Conficker

Generation of IP addresses in an infected nodes

Address generation

 Two disjoint subsets
 Local (high density) = subnet of the infected node
 Global (low density)

 Density = the probability that a random address
belonging to the set corresponds to a real node

 If the ratio of local vs global addresses is too low the
worm may be detected and removed before spreading,
eg infecting other nodes

 If the percentage is too large, then after infecting all
nodes resources are wasted because one node may be
infected several times

 Even low changes in the ratio may be very critical, non
linear effects

The influence of the ratio

A theoretical model

● Let us discuss a theoretical model to study
the spreading of a worm

● The model is epidemiological = it has been
defined to evaluate the number of people
infected overtime
● because of a contagious illness
● in a closed population

A finite state model of individual
to study the spreading

S I R

Model states

• susceptible = Host that may
be infected

• Infected = Infected host

• Recovered = Host that
cannot be infected

Typical transition sequences (red arrows)

• The host runs the software that is
vulnerable (potential).

• The worm has exploited the vuln and
successfully attacked the node (infected).

• The infection is detected and the system
reconfigured (recovered).

A finite state model of individual
to study the spreading

A set of diff equations
Classic epidemiology
● [Kermack and McKendrick, 1927]

● Alll the nodes follows the red paths in the automata
 (P to I, I to R)

s = potentially infected

i = infected

r = recovered

Beta = infection rate

Gamma = recovery rate

Gamma may be neglected
in the case of worms
because the time to spread
is very litte

s = potentially infected

i = infected

r = recovered

Beta = infection rate

Gamma = recovery rate

Gamma may be neglected
in the case of worms
because the time to spread
is very litte

 Kermack and McKendrick model
  is a function of

 The function to generate the IP addresses
 The number of the system affected by the vulns

 It increase with the virulence
 The model assume that a node can infected any

other node eg a fully connected system is
assumed (no filter, no protection)

  should not be neglected anytime
 The spreading is rather slow
 There are some automatic components to

detect and remove the infected nodes

Epidemiological threshold

R0=( sp) /

 sp= percentage of nodes that may be
infected

 R0 is the average number of nodes that an

infected node can infect

 If R0  1 the worm spreads, otherwise it will

be defeated

Solution of the system of diff
equations

 No exact solution can be computed
 Anytime the initial number of infected may

be neglected (I(0)0) then

Solution = logistic function

Time

Number of
Infected nodes

Epidemic

Slow-Finish

Slow-Start

A worm should be
detected and
removed in the
slow start phase

A worm should be
detected and
removed in the
slow start phase

A model that consider patching

There are two reasons why a node is no longer susceptible

1. It has been infected
2. It has been patched

The number of patched nodes is proportional to the susceptible and of infected ones

dS(t)/dt = - S(t)I(t) - dQ(t)/dt
dR(t)/dt = I(t)
dQ(t)/dt = S(t)J(t) patched increase with not affected
dJ(t)/dt = I(t)+R(t) not affected = either recovered or patched
S(t) + I(t) + R(t) + Q(t) = N

Further interesting models
 The previous models assume full connection (any two

nodes can interact. We can assume a partial
connection among nodes (scale free, small world, …)

 Initially some nodes are infected
 We would like to know

 How the connection structure influences the spreading and
the parameter R0

 How patching (=vaccination) influences the spreading
 Alternative vaccination strategy

 Alternative topologies may be be considered to
discover how they influence the spreading

Scale free

● Scale free
● When a connection is created, nodes with a larger

number of connections are preferred
● The rich becomes richer
● Connections are mainly due to a low number of

network hubs each with a number of connections that
increase in exponential way and a huge number of
hubs with a very low number of connections

● Very robust with respect to random node attacks,
highly fragile with respect to intelligent attacks i

Interconnection Topology

RG=random, SF=scale free, 2D= two dimensions lattice,
1D= one dimension lattice 2DR= two dimensions lattice rewired ,
1DR= one dimension rewired

Other interesting values

Average time
to max
infected

Max infection
rate

Number of
infected

Computing a worm b

Alpha

Tau

C = 1 (a random machine is selected)

C= N (an infected machine is always selected)

N = 232 (size of IP address)

Alpha = number of nodes tested in parallel

Tau =average time for testing a machine

C = 1 (a random machine is selected)

C= N (an infected machine is always selected)

N = 232 (size of IP address)

Alpha = number of nodes tested in parallel

Tau =average time for testing a machine

Code red

Tau = 19 seconds

Alpha = 100

Good approximation

Spreading - I

10 thread in parallels and conflicts on nodes to
be infected are neglected

Spreading - II

Optimization of the time out to detect that no
node has the IP address that has been generated

Spreading - III

Local bias in the generation

Spreading - IV

Spreading - V

• prescan to find better subspaces to generate IP addresses
 and with a large number of susceptible nodes

• Infected nodes are remembered and neglected
• multithread

Local vs global

Fig. 5. Comparison of Code Red, a /8 routing worm, a local
preference worm with different preference probabilities p.
(a) Local preference scan on “/8” network level (K=256, m=116).
(b) Local preference scan on “/16” network level (K=65,536,

m=29,696).

Extreme optimization

The time scale has changed

Which address space?
 Some worms consider IP addresses

 Any node can infect any other nodes
 The addresses that are generated depend upon the

adopted function and not upon the interconnection
 Some worms consider logical addresses, ie the

email addresses
 A node can infect only nodes it already knowns
 The interconnection structure that has to be considered

is the logical one

Trojan horse

 A program that has a different goal from the
expected one

 Its main goal is to implement a backdoor to
enable illegal accesses to the system

 Malware

Hybrid

 Most malware current integrates all the
previous behavior

 Software with an opportunistic approach to
spread to other nodes
 Usb
 Share
 Mail
 Attack


Autonomous Hybrid

 They can transmit themselves to other
nodes without exploiting the node resources

 Even if the node does not exchange email, it
can
 Trasmit email from the node
 Hide in the mail

Symantec Global Internet Security Threat Report
2009

in 2008, there were six trojans in the top 10 new malicious code
families detected. Three of the six trojans include a back door
component and one includes a virus component.
The remaining four families consist of worms,
one has a back door component and one has a virus component.

The previous edition of the Report noted that the prevalence of
trojans is indicative of multistage attacks.
A multistage attack typically involves an initial compromise,followed
by the installation of an additional piece of malicious code,
such as a trojan that downloads and installs adware. As was the case
in 2007, during this reporting period, five of the top 10 new malicious
code families that were identified download additional threats.

Malware detection

● Integrity based checks. Extremely effective in
detecting early rootkits, eventually the
rootkits started targeting process and kernel
memory.

● Compare the binary files stored in memory to
those that are stored on the hard disk drive
(HDD).

● Signature based detection has been the
classic approach to detecting malware in
computer systems.

Signature detection - II

● Whenever a new malware is detected, antivirus companies
scan its code for a unique sequence of bits.

● The unique sequence of bits then becomes the signature for
that specific malware.

● Three main disadvantages:
● rootkits might disable the antivirus package
● the rootkit is installed before the antivirus program and the

process is hidden from the antivirus program.
● if the antivirus software package does not contain a unique

signature for the malware, it cannot detect the malware

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Diapositiva 51
	Diapositiva 52
	Diapositiva 53
	Diapositiva 54
	Diapositiva 55
	Diapositiva 56
	Diapositiva 57
	Diapositiva 58
	Diapositiva 59
	Diapositiva 60
	Diapositiva 61
	Diapositiva 62
	Diapositiva 63
	Diapositiva 64
	Diapositiva 65
	Diapositiva 66
	Diapositiva 67
	Diapositiva 68
	Diapositiva 69
	Diapositiva 70
	Diapositiva 71
	Diapositiva 72
	Diapositiva 73
	Diapositiva 74
	Diapositiva 75
	Diapositiva 76
	Diapositiva 77
	Diapositiva 78
	Diapositiva 79
	Diapositiva 80
	Diapositiva 81
	Diapositiva 82
	Diapositiva 83
	Diapositiva 84
	Diapositiva 85

