Security of Cloud Computing

Fabrizio Baiardi
f.baiardi@unipi.it

F.Baiardi — Security of Cloud Computing — Introspection

Syllabus

* Cloud Computing Introduction
* Definitions
* Economic Reasons
* Service Model
* Deployment Model
* Supporting Technologies
* Virtualization Technology
* Scalable Computing = Elasticity
* Security
* New Threat Model
* New Attacks

- « Introspection

F.Baiardi — Security of Cloud Computing — Introspection

VMI

Virtual Machine Introspection
Techniques and tools to monitor VM behavior
Inspect a VM from the outside to assess what's happening on the
inside
Possible for security tools
— Virus scanners
— Intrusion detection systems

Observe and respond to VM events from a "safe" location outside the
monitored machine

F.Baiardi — Security of Cloud Computing — Introspection

Virtualization Overview

Windows XP Linux Solaris x86
virtual machine virtual machine wirtual machine

Virtual machine monitor

Operating system (physical host)

Physical hardware

F.Baiardi — Security of Cloud Computing — Introspection

Memory Mapping

Process
ACCES5es
memory M
address

(a}

Operating system
Process 1
accesses
memory

address

Page tables
(b)

Virtual machine Virtual
operating system machine
Process - mcnitor
accesses |
memory page-rame
address >
number from
Page tables virtual to
physical

F.Baiardi — Security of Cloud Computing — Introspection

Memory Mapping

* A process perspective
— Request results in direct access to the memory address

* The OS layer has an active role in providing memory location
access

— Access the page table to map the logical memory address to
a physical memory address

* VMM provides an abstraction layer between
— Each VM OS's memory management
— The underlying physical hardware

* VMM translates the VM-requested page frame number into a
page frame number for the physical hardware

* Gives the VM access to that page

F.Baiardi — Security of Cloud Computing — Introspection

VMM Memory Accesses

* VMM accesses memory pages assigned to each VM directly by
— VMM's active involvement in this process
— Its elevated privileges

* Without the VM actually requesting the page

* (Can also make those pages accessible to other VMs

F.Baiardi — Security of Cloud Computing — Introspection

Virtual Machine Introspection -1

By implementing a physical machine through a virtual one, we can
check the integrity of any component of the physical machine by
evaluating a predicate on the state of the virtual one = on some
memory subset of the physical one

This task can be delegated to the VMM but this strongly increases the
complexity of the VMM itself together with the probability of a
successful attack

If the VMM has not been successfully attacked, then the same task
can be delegated to another VM, the introspection one

This may be seen as a particular kind of dynamic, or semantic,
attestation where the Introspection VM can give some assurance about
the status of another VM

Bootstrap = the Introspection VM assures the integrity of a component
on a VM that, in turn, assures the integrity of the VM

F.Baiardi — Security of Cloud Computing — Introspection

Virtual Machine Introspection -2

* There are several ways of implementing VMI

— Asynchronous: the introspection VM evaluates some
invariant that should hold independently of the actions
executed by the VM

— Synchronous: the introspection VM monitors the execution
of the other VM and, at some predefined moments,
» freezes the execution of the VM
« evaluates a condition on the status of the VM
* resume the execution or kills the VM

* Synchronous is more complex because it involves a
synchronization between the two VMs

* |n any case a semantic gap arises: the Introspection VM access
single memory positions while the condition/assertion is defined
at a higher abstraction level

F.Baiardi — Security of Cloud Computing — Introspection

Virtual Machine Introspection - 3

Controls are more expensive but even more robust, wrt those
implemented between two processes sharing some memory,
because of the separation that the VMM implements between

— The environment to be monitored, monitored VM
— The monitoring environment, introspection VM
To minimize the control cost, a chain of trust can be used where

— some components in the execution VM implement some
control

— the introspection VM checks the integrity of these
components

In any case, the controls requires the formalization of a process
self to be compared against the actual process behaviour

10
F.Baiardi — Security of Cloud Computing — Introspection

* A simple introspection library to access the
memory of the Monitored VM

* A module in the kernel that checks the

Monitored VM Introspection VM integrity of the IDS on the Monitored VM
USERSPACE * The integrity of the kernel of the
Monitored VM is protected by the
PR Introspector in the Introspection VM
l KERNEL w | Ll : l p P
rospection *~ . T * Definition of the Introspector depends
Virtual Machine Manito;&“ upon that of the module in the kernel
S ARDWARE * Checks can be implemented anytime a

given nmber of kernel invocation has
occurred

11
F.Baiardi — Security of Cloud Computing — Introspection

Chain of Trust

Monitored VM Introspection VM
— #

Filz
System

Level 3 F Y A
chkrootklt, Snort, l

Tripwire, .. @ @ INTROSPECTOR
1

1
Level 2 v
Extensions ta the kernel, I P - SIMPLE
SELinux, LIOS, ...

> INTROSPECTION LIBRARY
Lavel 1 module KERNE

Ll
10T fsyscall table integrity,
text area, list apen files, ...

.
Metwork

Y

- h

1
|l
) . d 1
introspection - :

- ¥
L™
Virtual Machine Monitor | rocares

HARDWARE

F.Baiardi — Security of Cloud Computing — Introspection

Further advantages of VMI

Full visibility of the system running inside the Monitored VM: the
Introspection VM can access every Monitored VM component,
such as the main memory or the processor's registers.

Transparency: the security checks can be implemented without
modifying the software on the Mon-VM and they are almost
invisible
— The kernel has to be modified but not the application running
on the Monitored VM

— If the underlying architecture fully support virtualization, no
software on the Monitored VM has to be updated

13
F.Baiardi — Security of Cloud Computing — Introspection

A full HIDS: Introspection and Alerts

Introspection VM: monitors all the VMs.

@ The introspector protects kernel integrity.
@ The director:
Q collects the alerts;
Q@ executes actions in response to an alert: stops a VM.

Monitored VM Introspection VM

‘ COLLECTOR nltEf:Tm*Imursr-Ecmn
;] 1 v |

-

[LINUX ﬁz

; '%mintrn spection:

[
[] “"-l,‘,'f |
alerts: ", . '
' "'n-...%"_b : |
; ||||| I,um -
wcontrol network
_______________ INTERFACE
x E N wirtual
bridge

14
F.Baiardi — Security of Cloud Computing — Introspection

A more general case

Mﬂmtnred VM 1 Monitored VM 2 Introspection VM
- . p .
7 COLLECTOR T - COLLECTOR |I:IIFLECTO|1 INTROSPECTOR
: B 1 7 - T
i ., ; l"‘ i - ¢ 4
l| modute| = LINUX l| modute| = LINUX S
u . J A & ! y
.] E,. - 1
a’erts : ' """""""""" alerts : ""-\.«‘) . : 1
= introspection ™., . “-.,ml ntrospection . I
F g T . !
: —— e T
lYlIIclﬂllll1ItI':nllllIqleltI‘I“I.?!.IklIIYIIIIIIIIIIIIIIIII EEEEEEEN CGNTRDL
INTERFACE

XEN Virtus

bridge

15
F.Baiardi — Security of Cloud Computing — Introspection

Semantic Integrity and Introspection

A trivial attack classification
* Attacks against user-level processes:
— the attacker injects some code into a process

— the attacker diverges the original control-flow to execute the
injected code.

* Attacks against the kernel:
— modify some kernel functionalities
— modify the kernel behavior to hide any sign of the attack.

* User level attacks are the first step of a complex attack that,
after increasing the privilege of the attacker results in the
execution of an attack against the kernel or against the kernel
and then the VMM

16
F.Baiardi — Security of Cloud Computing — Introspection

Process Self

Process Self = The properties of a process that determine its run-time
behavior

The process self can be approximated through static analysis.
Axiom

if the process current behavior deviates from the process self then the
process code has been altered by an attack.

Measuring the semantic integrity:
— the approximation of the process self

— the monitoring the actual process behavior to assure that it is
coherent with the process self.

If P is a generic process that we want to protect.
— Self (P) refers to the process self of P
— SourceCode(P) is the source code of P program= syntactic integrity

17
F.Baiardi — Security of Cloud Computing — Introspection

All the relations

E

EFaqram current’

behaviou

Y,
inherit the self

exec(program);

=~ meniter trace of
system calls n-time

R

measuring the
semantic integrity

extract the
properties
static
analysis
program
analyze the
T compile the code code
compiler source code

SourceCode(F)

F.Baiardi — Security of Cloud Computing — Introspection

18

Self and OS calls

@ |t is widely accepted that an abstract description of a process
self should consider the OS calls issued by the process

@ Any attempt to violate the security policy, hide the trace of an
attack, avoid intrusion detection mechanisms involves some
interaction with the OS

@ Hence the process self should be defined in terms of the OS
calls

19
F.Baiardi — Security of Cloud Computing — Introspection

Self: Alternative Descriptions

Default Allow

Forbidden Calls: the set of system calls that P cannot issue

Forbidden Parameters: the set of system calls that P cannot
iIssue and assertions on the parameters it cannot transmit to a
call

Default Deny

Hashing or Memory Invariants; memory invariants to be
evaluated anytime P issues a given system call

Allowed Calls: the set of system calls that P can issue and
assertions on their parameters

Enriched Traces: the sequence of system calls that P issues in
one execution; each call may be coupled with an assertion on
the process memory

F.Baiardi — Security of Cloud Computing — Introspection

20

Enriched Traces

A set of enriched traces fully describes alternative legal behaviors of P

Proper static tools may be designed to map SourceCode(P)
into Self (P) described through enriched traces = <CFG(P), IT(P) >

CFG(P) =

— context-free grammar that defines the system call traces that P
may issue during its execution

— a set of strings on an alphabet with a symbol for each system call

IT(P)= a set of invariants {I(P, 1), ..., I(P, n) }, each associated with a
program point i, 1<i<n, where P invokes a system call.

21
F.Baiardi — Security of Cloud Computing — Introspection

Grammar Generation Algorithm - 1

* A static tool can generate CFG(P) while traversing AST(P), the
abstrax syntax tree of P

 CFG(P)= <T,F, S, R>where
— T is a set of terminal symbols with one symbol for each
distinct system call in SourceCode(P)

— F is a set of non-terminal symbols, one for each function
defined in SourceCode(P); each symbol corresponds to a
subset of T.

— S is the starting symbol, which corresponds to main;

— R is the set of production rules X -B where
* X is a non-terminal symbol
* B a sequence of terminal and non-terminal symbols.

22
F.Baiardi — Security of Cloud Computing — Introspection

Grammar Generation Algorithm - 2

GGA analyzes AST(P) and for each function fun defined
inSourceCode(P) it inserts into F a new non-terminal symbol S

and a new rule Rnew into R with S, as its left-hand-side

fun

fun

To generate the right-hand side of the rule, GGA linearly scans
the definition of fun in SourceCode(P)

Distinct production rules may be generated, according to the type
of statements in the body of fun.

For each statement, GGA generates a new rule and adds a new
symbol to the right-hand side of Rnew .

In this way, CFG(P) represents the system calls that fun can
invoke and the ordering among the invocations in the body of fun.

23
F.Baiardi — Security of Cloud Computing — Introspection

s Ve o T (s R B TR %

=

(o R P N

e I B B T O O

Grammar Generation Algorithm - 3

f(){
open () ;
read (});
g(): . .
close (); E?}_} :I;:Sirad (G} close;
g(){
getpid ();
f){
open |); (F)— open (5Ty);
ifi(x) (5T1)— read | &;
read (); . .
) May result in a false negative
F()14{ (F)— {IFELyY;
open (); {5111?5T25T5ﬁ§|
if{x) e (ELSE3);
e|5;63 O {5TIF3)— read;
close ();) {EI—S-'.—:S}—’ close;
I May result in a false negative

F.Baiardi — Security of Cloud Computing — Introspection

24

Assertion Generator -1

* The Assertion Generator traverses AST(P) and analyzes the
variables, functions and language statements to build the invariant

table (IT (P)).
* To simplify the analysis, we restrict to:

— integer variables: only files and socket descriptors to express
relations among these variables and the system calls;

— string variables: in case of arrays of char statically declared,
functions to manipulate strings are treated like assignments;

— struct members: only integer or string type field.

25
F.Baiardi — Security of Cloud Computing — Introspection

Assertion Generator - 2

Any assertion is the composition of any of the followings:

Parameters assertions. They express data-ow relations among
parameters of distinct calls, e.g. the file descriptor in a read call is
the result of a previous open call.

File Assertions. To prevent symlink and race condition attacks,
they check, as an example, that the real file-name corresponding
to the le descriptor belongs to a known directory.

Buffer length assertions. They check that the length of the string
passed to a vulnerable function is not larger than the local buer to
hold it.

Conditional statements assertions. They prevent problems due to
impossible paths by relating a system call and the expression in
the guard of a conditional statement (important difference wrt self
described as CFG only)

26

F.Baiardi — Security of Cloud Computing — Introspection

The Analyst - 1

Monitored VM (MON-VM) Introspection VM (1-VM)
i Memory Introspection P —— ™)
traced process | - — U _ [o, ANALYST !
\ e T e e [ASSERTION] |
- - E 5 CHEC KER |
F i - : * F 1
1
' I
i | fani |
! N arianis :
I
. '\ CFGR]
syscall(); L i o
.—.,-']
. I
¥ Kernel wariables - FARSER +
______ * Ma] 1
I~ ~ Himea”) Addresses T P | LEX. AMAL | J
\syscall hijack modulef——— g5 L4 - Y s st
mc,,_i ______ e el
. -
il el VCPU-C - -
nainstsysests L= Tracing/VCPU-Introspection Kernel
. '
" Event channel (Synchronization) .
L]
-

Xen Virtual Machine Monitor

F.Baiardi — Security of Cloud Computing — Introspection

The Analyst - 2

The Analyst in the I-VM verifies the integrity of the self of P through:

» Lexical Analyzer: it verifies that the system call that P wants to issue
belongs to the set of system calls returned by the static analysis of
SourceCode(P);

» Parser: it checks that the current trace of system calls issued by P is
coherent with CFG(P), i.e. it is a prefix of a word allowed by CFG(P);

» Assertion Checker: it checks whether the invariant coupled with the
current system-call holds.

28
F.Baiardi — Security of Cloud Computing — Introspection

stack

Monitored VM (MON-VM)

Invariant Evaluation - 1

Introspection VM (I-VM)

[menftored process address space] i N
Low [. memory & YCOPU-context
call =writepplt= |BxBA4R595 introspection I,_ ____________ _,I
now ExfFIFFFfo inyariant table
{xebp) , ean OxB34359d 1ivCPl dntri"kernel_sp=] --= @xc7a2fffa |j [BxEB4E55d
& 2imapl@xcTa2FIfR] i: pxbfadfEsa: int,
Bxb¥fadffa |oxbfadfaon j==5]
BxEO4259d |exbfsdfgeC (ret] | 3iresd “esp” wvalue --> Oxbfadfaty I [
dimaplexbfadfang] 1 I
high :
9 ;ﬂthgﬂfﬂﬁﬂ [l Slread "ret” valuge --= Bx<BERIES9d I I
acFezfefe [Jhigh]&imapi@xbfadf858): “i* in invariant set ! ¥ !
Wintrospectian I
tespl] Axbfadfans irasd "i® valug --= 5 il tibrer I
kernel
. Blevaluate invariant: (i==5)7 o e e e - - J
VCPU s 4
(adx) 6 Kernel
(kernal_sp) | ook) axpodates
E)‘C?Efffﬂ fEhlﬁ 3]_m
F. N -
A A~
| | - ' n
. XenStore/Event channel (synchronization) .
¥ L
-

Xen Virtual Machine Monitor

F.Baiardi — Security of Cloud Computing — Introspection

29

Invariant Evaluation - 2

* The Introspection VM runs an Assertion Checker that evaluates
invariants on P memory status

* Access to the variables of P and to the CPU of the Monitored VM is
implemented through an Introspection Library

* Every time P issues a system call the Introspection VM:
(i) retrieves the system call number and the value of its parameter;
(i) determines the invariant coupled with the issued system call;
(iif) retrieves the values of the variables that the invariant refers to;
(iv) evaluates the invariant and:

* Kills P if the invariant is false
« otherwise it resumes the execution of P.

30
F.Baiardi — Security of Cloud Computing — Introspection

Memory Monitoring
Implementation

31
F.Baiardi — Security of Cloud Computing — Introspection

Monitoring Memory on Production-Level Systems

(1) Passive Monitoring: Viewing memory in A, from S without any timing

synchronization between the two virtual machines
(2) Active Monitoring: Viewing memory in A. from S with event notification being sent

from A, to S to permit monitoring at relevant times

(3) Locating Valuable Data: Applying formal models or obtained from supervised
learning to find critical data structures within the raw memory view

F——— Application Virtual Machines —— | Security 4 +— Control —

A Ap || Ag

Hypervisor (e.g., Xen or VMWare ESX or Microsoft Hyper-V)

Hardware Platform

32
F.Baiardi — Security of Cloud Computing — Introspection

Xen overview

* Runs directly on the physical hardware

* Special management domain is called DomO to provide a management
interface

 The VMM gives Dom0 system access to a control library

— create, destroy, start, pause, stop, and allocate resources to VMs
from DomO

* Provides drivers for the host’s physical hardware
* Can also request that memory pages allocated to unprivileged VMs

33
F.Baiardi — Security of Cloud Computing — Introspection

Xen overview

Dom 0 Dom 1 Dom 2
(privileged) (unprivileged) (unprivileged)

= =

Xen virtual machine monitor

Physical hardware

F.Baiardi — Security of Cloud Computing — Introspection

Dom n
(unprivileged)

=

34

The XenAccess Library

= root@bluemoon:/home/bdpayne

Fle Edit View Terminal Tabs Help
root@bluemoon examples]# ./process-list 1

An open source VM
introspection library

Access to virtual addresses,
kernel symbols, and more

Works with Xen and dd-style
memory 1mage files

Released in Spring 2006

Maintained by Georgia Tech
Inf. Sec. Center to encourage
more research

http://www.xenaccess.org

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

4] System
420] smss.exe
468] csrss.exe
496] winlogon.exe
548]
552] lsass.exe
7808] swvchost.exe
760] svchost.exe
828] svchost.exe
876] svchost.exe
924] svchost.exe
1220] spoolsv.exe
1792] alg.exe
1876] wscntfy.exe
1952] explorer.exe
148] ctfmon.exe

1924] procexp.
root@bluemoon examp

exe

/¥ initialize the xen access library #*/
xa_init(dom, &xai);

services .exe /* get the head of the list #*/

xa_read long sym(&xai, "PsInitialSystemProcess", &list head);

memory = xa_access_wirtual_address(&xal, list_head, &offset);

memcpy (&next_process, memory + offset + ActiveProcessLinks_OFFSET, 4);
list_head = next_process;

/¥ print out the first process */

name = (char *) (memory + offset + ImageFileName_OFFSET);
memcpy (&pid, memory + offset + UniqueProcessId_OFFSET, 4);
printf (" [%5d] %s\n", pid, name);

munmap (memory, xal.page_size);

/* walk the process list */

while (1}{
/* follow the next pointer */
memory = xa_access_virtual_address(&xal, next_process, &offset);
memcpy (&next_process, memory + offset, 4);

J* 1if we are back at the list head, we are done */
if {list_head == next_process){

break;
}

/* print out the next process */

name = (char *) (memory + offset + ImageFileName_OFFSET -
ActiveProcessLinks_OFFSET);

memcpy (&pid, memory + offset + UniqueProcessId_OFFSET -
ActiveProcessLinks_OFFSET, 4);

printf("[%5d] %s\n", pid, name);

munmap (memory, xal.page_size);

}

/¥ cleanup */
xa_destroy(&xal);

F.Baiardi — Security of Cloud Computing — Introspection

35

Passive Monitoring

To monitor application memory of another virtual machine
we have to map the memory into an address of the

Monitoring VM (dom0) monitoring one
Monitor
Mapping “raw memory view” to virtual addresses and
Q é symbols requires the steps shown in figure below.

XenAccess

Address and symbol mapping can be performed by a VM
;’""!:“_@ A introspection library (e.g., XenAccess)
User VM (domU)

5 swapper pg_dir I
page table

kernel data

BD Payne, M Carbone, and W Lee. Secure and Flexible Monitoring of Virtual Machines. In ACSAC 2007.

36
F.Baiardi — Security of Cloud Computing — Introspection

Steps for Passive Monitoring

Dom0 application wants to Requested Address = OnCROD0000, KPGD address = OxCOT12000 (from swapper_pg_dir)is

read kerned modide struct but also above directly mapped in range directly mapped by kemel,

at address OxCEI32TE0 in memary, so use DomU Kemel Page [OxCO000000, OxCODM0000 + *{rmax_fow _pfn << 12]], so
Doml Global Directory (KPGD) PFN = (0xC0712000 - 0xCO000000) > 12 = 0x712

Call Xen VWM to convert Physical Frame
Number (DomU context) into Maching Frame
Number (Physical Machine context):
PFN 0x712 = MFN 0x13303

r

Call Xen VMM to map MFN into Dom0

l

DomU KPGD now

memory space; MFN 0x133b3 mapped fo
address OxBFF54000

J

mapped to Domi space
* s Call Xen VMM to convert Physical Frame
0xCBY32780 >> 22 = (k322 : SRR St EEELO0 Ehge Fmle stpess b invee Number (DomU context) into Machine Frame
(lnddex into Page Diseclory) oL = L ENTKREN MappnC by e 5D Number (Physical Machine context):
ag E (Address of Page Table) PFN = 0x07d90000 >> 12 = 0x7d90 PEM 0x7d90 = MEN Ox20F TS
r
f Call Xen VMM 1o map MFN into Domd memaory space:
l | MFMN Ox20FT8 mapped to address OxB7F54000
DomU Page Table now
mapped to Dom0 space
e =0x132 :II»___ - Uﬂ]b::s‘bHEE. | Ox0685F 163 »= 12 = 0x685F Number (Deml context) into Machine Frame
{Index into Pa = | (Physical Frame Mumber) Mumber {Physical Machine context):
ga Table) :
: PFN Ox685F < MFM 0x22449

Y

-

kemel module struct

Dom(application now has access fo requested DomU Call Xen VMM to map MFN into Dom memory space:

MFN 0x22449 mapped to address OxBTF53000

F.Baiardi — Security of Cloud Computing — Introspection

37

Active Monitoring

Monitoring application receives event notification from Guest VM when code execution
reaches one of the hooks installed in the Guest VM kernel.

Hooks and all associated code are protected from tampering using hypervisor-enforced
memory protections (i.e., User VM can not modify these security-critical components).

Hooks invoke trampoline, which transfers control to the security application.

Guest VM Security VM

Hypervisor

Hardware (CPU + virtualization extensions)

38
BD Paynel- N3 @axish me SRS H i fOh e Oud deompuikinfor BecoapaetienMonitoring Using Virtualization. In Oakland 2008.

Ether

* Use Intel VT hardware virtualization extensions to provide instruction
execution on actual hardware

* Extend the Xen hypervisor to leverage Intel VT for malware analysis

* Provides for both instruction-by-instruction examination of malware, and
also coarser grained system call-by-system call examination

« System Diagram:

Dom0O
Ether DomuU I DomU
Userspace (Windows (Windows
S Guest) Guest)
Component
A

i
I
" _J___ _ | Ether Hypervisor Component Xen

CPU / Hardware

39
F.Baiardi — Security of Cloud Computing — Introspection

Ether: Experiments

 Two tools to test the Ether framework:

— EtherUnpack: extracts hidden code from
obfuscatd malware

— EtherTrace: Records system calls executed by
obfuscated malware

 Evaluation

— EtherUnpack: how well current tools extract
hidden code by obfuscating a test binary and
looking for a known string in the extracted code

— EtherTrace: a test binary which executes a set of
known operations obfuscated and then observe if
these operation were logged by the tool

F.Baiardi — Security of Cloud Computing — Introspection

40

Ether: EtherUnpack Results

Armadillo yes
Aspack no yes yes
Asprotect yes yes yes
FSG yes yes yes
MEW yes yes yes
MoleBox no yes yes
Morphine yes yes yes
Obsidium no no yes
PECompact no yes yes
Themida no yes yes
Themida VM no no yes
UPX yes yes yes
UPX Scrambled yes yes yes
WinUPack no yes yes
Yoda’s Protector no yes yes

F.Baiardi — Security of Cloud Computing — Introspection

Ether: EtherUnpack Results

PolyUnpack = Approach 1s based on the observation that sequences
of packed or hidden code 1n a malware instance can be

made self-identifying when its runtime execution 1s checked
against its static code model.

Renovo = An approach based on the observation that sequences
of packed or hidden code 1n a malware instance can be

made self-identifying when its runtime execution 1s checked
against its static code model.

42
F.Baiardi — Security of Cloud Computing — Introspection

——
None

Armadillo
UPX
Upack
Themida
PECompact
ASPack
FSG
ASProtect
WinUpack
tElock
PKLITE32
Yoda’s Protector
NsPack
MEW
nPack

I RLPack

RCryptor
F.B Rew

Ether: EtherTrace Results

yes yes yes

no

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

no

yes

yes

yes

yes

yes

no

yes

yes

yes

yes

yes

yes

no

yes

no

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

43

VIX

Virtual Introspection for Xen
Place in the privileged Dom0 VM
Interact through a stable API

Reduce the application's ability to perform inline processing
(requests in real time)

F.Baiardi — Security of Cloud Computing — Introspection

44

How VIX works

Pauses operation of the target VM
Maps some of its memory into the Dom0
Acquires and decodes the memory pages
Resumes operation of the target VM
Reference task_struct data structures
— process ID, process name, memory map, and execution time
Traverses the list of task_structs

F.Baiardi — Security of Cloud Computing — Introspection

45

List of task_structs

PID: 1 541 _—
Mame: dhclient

-

S e —

PID: 1613
MNMame: sshid

-»
- init__task
-»

PID: 5110 PID: 1
MName: bash PID: O - Mame: init
- MName: swapper ———

Linux stores this list as a circular double-linked list
Each kernel version has an associated memory address for the
first process

46
F.Baiardi — Security of Cloud Computing — Introspection

VMI Functionality

Not depend on any VM OS functionality for information
VIX application

Vix-ps, vix-netstat, vix-Isof, vix-pstrings, vix-lsmod, vix-pmap,
and vix-top

VIX-pS
Traverse the entire task list
Output as the ps command

47
F.Baiardi — Security of Cloud Computing — Introspection

VM Introspection - VMware Initiatives

Security API’s
* Designed for security productization
* Agent runs within a VM
* Capabilities
*Memory access events
*Selected CPU events
*VM lifecycle events

*Access to VM memory & CPU state
*Page Table walker

F.Baiardi — Security of Cloud Computing — Introspection

48

Security APls (VMsafe)

Goals

* Better than physical
Exploit hypervisor interposition to place new security agent
Provide security coverage for the VM kernel (and applications)
* Hypervisor as a Base of Trust
Divide responsibilities between the hypervisor and in-VM agent

The hypervisor covers the VM kernel, the rest is done from within
the VM

Insure in-VM security agent execution and correctness
* Security as an infrastructure service

“Agent less” security services for VMs

Flexible OS independent solutions

49
F.Baiardi — Security of Cloud Computing — Introspection

Verify-Before-Execute Flow

- 0w T

Power On

A

Query VM

VM Information

A

Install Triggers

Page access event

Security

A

Agent Query CPU & Memory state

CPU State & Memory Pageqd

A

Install / Remove Triggers

Power Off

A

50
F.Baiardi — Security of Cloud Computing — Introspection

Sample Introspection Agents

Verify-Before-Execute
Utilize memory introspection to validate all executing pages
NX [NX | NX | NX | NX

Flow
Trace all pages for execution access

NX NX | NX | NX

NX / NW
NX / NW Is bad?

On execution detection
Trace for page modification
Verify if page contain malware NW
Remove execution trace

NW / NX

On modification detection
Trace for execution NX
Remove modification trace

51
F.Baiardi — Security of Cloud Computing — Introspection

Security APls — Use cases

VM Kernel coverage

— Detect infection in early boot process

* Device opt ROM attacks

* Boot loader

* Boot records

« OSimage
— Detect code injection due to kernel vulnerabilities
— Detect self modifying code in kernel

— Lock kernel after initialization

F.Baiardi — Security of Cloud Computing — Introspection

Case Study - Microsoft Patch Guard

* Goal
—Prevent patching of (x64 based) kernels
—Force Indipendent Software Vendors to behave nicely
—Prevent Root-kits 7?7
* Implementation
— Obfuscated Invocation
— Obfuscated Persistence
—Evolving (Thanks to the awesome work from uninformed.org)
* What's The Problem?
— Circumventable
— Complicated
—Only for x64 based Windows Systems

F.Baiardi — Security of Cloud Computing — Introspection

53

Security APls — Use cases cont’

Watch dog services

Liveness check for in-VM security agent
Detect agent presence
Verify agent periodic execution
Protect agent code and static data

F.Baiardi — Security of Cloud Computing — Introspection

54

Ly TPM vs. Introspection

AR

TPM VM Introspection

Root of trust rely on hardware ’
Passive device ’

Platform and software stack
decide what to measure

Need software update to o
change measurement
coverage .

Can not detect compromise
in software stack since
verification

Root of trust rely on hypervisor
Introspection agent have the
initiative

Security vendor / policy dictate
what to measure

Coverage is content, and can
change independently of VM

Designed to continuously scan
VMs and to detect compromise

55

F.Baiardi — Security of Cloud Computing — Introspection

‘WJ.V.L\‘

“%: VMsafe — Network Introspection

* Capabilities
— Place an inline network agent on any VM virtual nic
— Allow reading, injecting, modifying, and dropping packets.

* Benefits
— Efficiently monitor inter-VM network communication
— Integrated support for live migration

* Virtualization only applications

— Correlate VM internals with network policy. (using CPU/ Memory
inspections one can learn OS version, patch level, configuration etc)

— Build a trusted distributed firewall.

56
F.Baiardi — Security of Cloud Computing — Introspection

Retrospective Security

* Motivation
—Detect whether you have been attacked in the past
—Detect if you might be still compromised by a past attack
* Method

—VMware Record & Replay allow for a deterministic replay of
VM using recorded logs

— Potentially the recordings have captured an attack

— The security API's are detached from the recorded VM
(unlike in-VM agent) and can attach to a replay session

F.Baiardi — Security of Cloud Computing — Introspection

57

Retrospective Security

* What is it good for?

—Run more aggressive policies that will not be acceptable in
production environments

—Discover Odays used to exploit your system
—Learn how the malware / attacker have navigated your system

—Use data tainting technique to detect any side effects that still exist
on your system

—Possibly clean the finding from last step on your production VM.

—Learn about the scope of the damage done to your system, i.e.
what is the extent of data leakage

58
F.Baiardi — Security of Cloud Computing — Introspection

Security vs. Hardware Virtualization

1st Generation — SVM, VT-X
— VMM no longer need to run the VM kernel under binary translation

— Security Trade off — Code Breakpoint, Guest code patching (while
translating), Control flow visibility

2" Generation — NPT, EPT
— VMM no longer need to have software based MMU

— Security Trade off — Tracking LA->PA mapping is becoming
expensive, resulting with inability to operate on linear addresses.

34 Generation — 10 MMU, VT-D

— VMM can assign physical devices to VMs without worry of VM
escape or hypervisor corruption

— Security Trade off — Avoids interposition on the pass-thru device

59
F.Baiardi — Security of Cloud Computing — Introspection

1 generation

Guest OSes run at
intended rings

Mode H/W VM Control Memory and 1/0
Structure (VMCS) Virtualization

WT-%

CPU, with
VT-x (or \VT-i)

With HW wvirtualization, the guest OS is back where it belongs: ring 0.

Processors

60
F.Baiardi — Security of Cloud Computing — Introspection

Shadow page table

Linear address:

3l 24123 16|15 0
1o 4710 12
page directory
2 page table .
=
]

i
" m
32bitPD o | . o
entry P
= o =
E
= i
: 32 bit PT ° £
entry 5 ﬁ

-= -

- = e

--.__,-"’f 32x -
— 8 CR3 =
-.

#) 32 bits aligned to a 4-KByte boundary

Shadow page table

Three abstractions of memory
Machine: actual hardware memory
2 GB of DRAM
Physical: abstraction of hardware memory managed by OS
If a VMM allocates 512 MB to a VM, the OS thinks the
computer has 512 MB of contiguous physical memory
(Underlying machine memory may be discontiguous)
Virtual: virtual address spaces you know and love
Standard 232 address space
In each VM, OS creates and manages page tables for
its virtual address spaces without modification
But these page tables are not used by the MMU hardware

Shadow page table

VMM creates and manages page tables that map
virtual pages directly to machine pages

* These tables are loaded into the MMU on a context switch

* VMM page tables are the shadow page tables

* VMM needs to keep its V— M tables consistent with
changes made by OS to its V— P tables

* VMM maps OS page tables as read only

* When OS writes to page tables, trap to VMM

* VMM applies write to shadow table and OS table, returns

* Also known as memory tracing

Shadow page table

Guest Guest :
Virtual ~ Physical I\|\//I|2$:éne
AS AS Y
Guest A 5
,\
/ 3
6 | <
9
Guest B > |y

2 generation

Hardware Support
Nested/Extended Page Tables

VA—PA mapping

r'r.""
I -.‘."—#

y

s = “-‘-\-\‘

guest
VMM

PA—MA mapping
EPT or Nested Page Tables is based on a "super” TLB that keeps track of both the Guest OS5 and the VMM
memory management.

65
F.Baiardi — Security of Cloud Computing — Introspection

’sSecond generation: Intel EPT & AMD NPT

* Eliminating the need to shadow page table

Future Extensions: EPT

EPT: Overview
EPT Base Pointer

Guest Intel® 64 Host
Linear Page i Physical
Address Tables Address

 Intel® 64 page tables
— Map guest-linear to guest-physical (translated again)
— Can be read and written by guest

e New EPT page tables under VMM control
— Map guest-physical to host-physical (accesses memory)
— Referenced by new EPT base pointer

« No VM exits due to page faults, INVLPG, or CR3 accesses

F.Baiardi — Security of Cloud Computing — Introspection

/O device assignment

— VM owns real device

DMA remapping

— Support address translation for DMA

Interrupt remapping

— Routing device interrupt

67
F.Baiardi — Security of Cloud Computing — Introspection

Threat Monitoring/Interfering

Other approaches are possible
An important classification is
— Monitor subject
— Interfere with subject
Only monitor subject behavior
— Livewire
— Monitor a system can only detect and report problems
Interfere with subject behavior
— LycosID, pDenali
— Can actually respond to a detected threat
— Might terminate the relevant processes or VM

— Might reduce the resources available to the VM (starve the
attacker)

F.Baiardi — Security of Cloud Computing — Introspection

68

Livewire

* An early host-based intrusion detection system
* Monitors VMs to gather information and detect attacks
* Merely reports it rather than interfering

Policy Engine

Policy Modules

=11

A
¥

Config File|_*___*‘ Policy Framewcrkki

Monitored Host

h!
I
I
I
I
I
I
I
I
I
I
I
I
I

Command Guest Apps

e

)
Query Response

Guest OS

Guest 0S5

Metadata

H“ﬂﬂ:os Interface Libra;%
) Virtual Machine

A -

callback or

______________ A
Hardware State T Response

T o o — — — — — — — — — o — ——

[Virtual Machine Monitor

F.Baiardi — Security of Cloud Computing — Introspection

LycosID

* Uses crossview validation techniques to compare running

Processes

* Patches running code to enable reliable identification of hidden

processes

40 - 1 proc/s b 1.0e+00 1 procls
20 r 1 1.0e-02
0 1.0e-04
20 1 1 DB0E e o e ettt e et et e
1.0e-08
o] 30 60 90 120 150 180 210 240 270 300 330 90 120 150 180 210 240 270 300 330
40 - 10 procs/s 1 1.0e+00 10 procs/s
20 - 1 1.0e-02
(1] Wl—vh-.—.m—rhnv—.mmu—.—akq”.— 1.0e-04
20 |] ot S e
g MOt 1.0e-08
s o] 30 60 90 120 150 180 210 240 270 300 330 o 30 60 90 120 150 180 210 240 270 300 330
k] =Y
5 40 25 procs/s b &= 1.0e+00 25 procs/s
= 20 1 2 1.0e-02
5 1] mm'—ﬁfhﬂ-ﬂ-%ﬂ-—-uvﬂ—Hm“—vﬂﬂfﬂhwﬁ—»Wr%nWT P 1.0e-04
8 =20} 1 B 10008 frem e oo eem et ees et ee s e e et ot eem et e et et et s e e
w40 L N N L Z_ 1.0e-08 L L N - |
g o] 30 60 90 120 150 180 210 240 270 300 330 o 30 60 90 120 150 180 210 240 270 300 330
1=
O a0 f 50 procs/s 1 1.0e+00 | 50 procs/s
20 | 1 1.0e-02
0 i IJJIJ T JL"‘”’ w1 e 'd i . l Tnf¥ I"'I-“‘" 1.0e-04
20 | i 1 0BOE e e e T et et et
-0t . s 1.0e-08 s .
o] 30 60 90 120 150 180 210 240 270 300 330 o 30 60 90 120 150 180 210 240 270 300 330
40 - 100 procs/s 1.0e+00 100 procs/s
20 1.0e-02 |
1.0e-04
B T S SO
L 1.0e-08 +
o] 30 60 90 120 150 180 210 240 270 300 330 o 30 60 90 120 150 180 210 240 270 300 330
Time (seconds) Time (seconds)
70

F.Baiardi — Security of Cloud Computing — Introspection

Manitou

* A VMI designed to detect malware

* Compares known instruction-page hashes with
memory-page hashes at runtime before starting a
program

* The instruction-page is corrupted and nonexecutable
for no match

* A self attestation model

F.Baiardi — Security of Cloud Computing — Introspection

71

uDenali

* Acts as a switch for network requests to a set of VMs
* Can force a VM reboot

* lts first goal is designing and implementing mechanisms for
lightweight VMMs, virtual machines, and guest operating
systems, so that 100s or 1000s can concurrently execute

* An ancillary challenge implied by this is resource management
across virtual machines: to fully isolate one VM from another

Denali virtual
machine interface

—

service

service

service

Denali isolation kernel

x86 hardware

%86 arch.
interface

F.Baiardi — Security of Cloud Computing — Introspection

72

uDenali

* |solation kernel serves two roles
- virtualization: exposes the Denali virtual interface

- resource management: multiplexes physical resources across
virtual machines

« Fairly standard mechanisms

- per-VM kermnel thread stack, timer driven context switching,
paging regions striped across disks

« Two policies for CPU multiplexing

- gatekeeper: enforces admission control, by selecting a subset
of active machines to admit into system

- scheduler: controls context switching among active machines

* round-robin scheduling

F.Baiardi — Security of Cloud Computing — Introspection

73

uDenali

» A virtual /O device is basically a
queuing system
— virtual ethernet NIC has two queues
* incoming (Rx) packet queue
* outgoing (Tx) packet queue
* Isolation kernel multiplexes and
demultiplexes data from queues
— two policy questions:
* what is the queueing discipline?

* how many buffers should be allocated to
each queue?

F.Baiardi — Security of Cloud Computing — Introspection

VM 1 VM 2

=1 WP
ElE

l isolation
kernel

ethernet

74

Semantic Awareness

* Account for different guest OS

« provide information that is more detailed

* Parse kernel memory to build a process table map
* Unaware VMI simply see memory as bits

LARES

* Gives each VM an internal "hook"
— Activate an external monitoring control upon execution

* Monitor can interrupt execution and pass control to a security
mechanism

— The hook is injected into the VM OS
— Hypervisor write-protects both the hook and the transfers control
— Triggers at a meaningful system execution point

75
F.Baiardi — Security of Cloud Computing — Introspection

* Monitor the VM's memory management unit

Semantically Unaware (AntFarm)

* Can construct the virtual-to-physical memory mapping
* Infer information about the machine's processes and OS
* Anticipatory Scheduling

Process Addr Spc Inferred | Process Addr Spc Inferred | Context CS
Create Create Create Exit Exit Exit Switch Inferred
Linux 2.4 x86
Fork Only 1000 1000 1000 1000 1000 1000 3331 3331
Fork + Exec 1000 1000 1000 1000 1000 1000 3332 3332
Vtork + Exec 1000 1000 1000 1000 1000 1000 3937 3937
Compile 815 815 815 815 815 815 4447 4447
Linux 2.6 x86
Fork Only 1000 1000 1000 1000 1000 1000 3939 3939
Fork+Exec 1000 2000 2000 1000 2000 2000 4938 4938
Vtork + Exec 1000 1000 1000 1000 1000 1000 3957 3957
Compile 748 1191 1191 748 1191 1191 2550 2550
Windows
Create 1000 1000 1000 1000 1000 1000 74431 74431
Compile 2602 2602 2602 2602 2602 2602 835248 835248

F.Baiardi — Security of Cloud Computing — Introspection

76

IntroVirt

* |t supports the construction of vulnerability specific predicates
* Attempt to bridge the "semantic gap" between

— The VMI application

— The target VM

* Using functionality on the target VM itself to lend context to the
acquired data

* Basic mechanism insert assertion + replay VM

77
F.Baiardi — Security of Cloud Computing — Introspection

IntroVirt: the patch complexity

lines in

Application Reference Description of bug Type of bug pred [patch
Linux kernel [CAN-2003-0961 | integer overflow in do_brk integer overflow 8 2
OpenSSL CAN-2002-0656 | SSL2 client master key arg bufler overflow buffer overflow 7 3
squid CAN-2005-0173 | squidddap-auth incorrectly handles usernames w/ spaces | malformed input 27 20
Linux kernel | CAN-2004-0109 [ISO9660 fs long symlink buffer overflow buffer overflow 41 17
find 120] TOCTTOU race condition race condition 63 | N/A
bind CAN-2005-0033 | buffer overflow in q-usedns buffer overflow 16 2
emacs CAN-2005-0100 | format string vulnerability in movemail utility format string 9 1
gv CAN-2002-0838 | unsafe call to sscanf buffer overflow 1 2
imapd CAN-2005-0198 | incorrect logic in CRAM-MD5 authentication logic error 6 1
Linux kernel | CVE-2003-0985 | mremap zero-area VMA remapping vulnerability missing validation 8 2
Linux kernel | CVE-2004-0077 | mremap missing do_munmap return value check missing validation 15 7
Linux kernel | CAN-2004-0415 | file offset pointer race condition race condition 107 90
osCommerce | CAN-2005-0458 | cross-site scripting vulnerability in contact-us.php malformed input 27 1
phpBB (CAN-2004-1315 | code injection via highlight parameter malformed input 30 1
smbd CAN-2003-0201 | buffer overflow in call_trans2open buffer overflow 10 1
squid CAN-2005-0094 | buffer overflow in gopherToHTML buffer overflow 8 4
util-linux CVE-2002-0638 | chsh/chfn temporary file race condition race condition 25 1
wu-ftpd CVE-2000-0573 | format string vulnerability in Ireply format string 16 1
wu-ftpd CAN-2003-0466 | off-by-one bug in fbrealpath off-by-one 11 1
xpdf/cups CAN-2005-0064 | decryption function buffer overflow vulnerability buffer overflow 7 2

78

F.Baiardi — Security of Cloud Computing — Introspection

Event Replay

* Ability to replay, or log events on a VM is useful
— Debugging OSs
— Replaying compromises
* VM must record enough information to reconstruct interesting
portions
* The penalty is to record extra information

Revirt

* An example of a logging VMI

* Serves as the basis for time-traveling VMs that allow replay
from any previous VM state

79
F.Baiardi — Security of Cloud Computing — Introspection

ReVirt

Workload Runtime with logging (normalized | Log growth | Replay runtime (normalized
to UMLinux without logging) rate to UMLinux with logging)
POV-Ray 1.00 0.04 GB/day 1.01
kernel-build 1.08 0.08 GB/day 1.02
NFS kernel-build 1.07 1.2 GB/day 1.03
SPECweb99 1.04 1.4 GB/day 0.88
daily use =] 0.2 GB/day 0.03

F.Baiardi — Security of Cloud Computing — Introspection

80

laaS, Overlay and Security

Trust in the network of VMs that is mapped onto the cloud may be
Increased by inserting into the networks some VMs that monitors the
self of the processes running on the VMs and the data these VMs
exchanges

The coverage of the checks on process and data can be increased by
minimizing the number of processes that each VM runs i.e. by
increasing the number of VMs

This has obvious advantages in term of safety and of performance
and overcomes the classical distinction between host and network
IDS e.g. to protect a process Pcrit running a critical application we can

— Map it onto a distinct VM, VMcrit
— Introduce a further VM to protect Pcrit self

— Monitoring the communication to/from VMcrit even from processes
that where mapped onto the same physical node

81
F.Baiardi — Security of Cloud Computing — Introspection

A software architecture that exploits virtualization to share in a secure
way a cloud system.

It decomposes users into communities: a set of users, their
applications, a set of services and of shared resources.

Users with distinct privileges and applications with distinct trust levels
belong to distinct communities = Each community is paired with a level
that defines the security requirements and the trust in the community

Each community is supported by a virtual community network = VCN
— a structured

— highly parallel

overlay network that interconnects VMs built by instantiating one of a
predefined set of VM templates.

82
F.Baiardi — Security of Cloud Computing — Introspection

VM templates

VM Templates

shared configuration & private
security ~communicaton storage applications management storage
I |] I [|

A-VMs CC-VMs F5-VMs APP-VMs INF-VMs || |[COM-VM s

e - — = -
e S e o omm omm o e = e —

AWM = assurance WM

b - A f , .
instantiation/configuration
CC-YM = communication/contral WM

FS-VM = file system VM y [0in & community
APP-VM = applhication VI insert the VM into a VCN
INF-M = infrastructure Wk
COM-VM = community WM + mapping
VMM VMM
Node i Node |
core 1

83
F.Baiardi — Security of Cloud Computing — Introspection

Interaction

* Direct Interaction within VMs in the same community

* Community VM manages resources shared among the same
community

* Firewall VM protect the communications among VMs of distinct
communities e.g. communication routed through nodes shared
with low level communities are encrypted

* File System VM manages resources shared among distinct
community by applying
— a security policy based upon the level of the various
community (e.g. Bell La Padula policy)
— Tainting to protect data

Some VMs are introduced to manage the infrastructure (VM
mapping, allocation, migration)

84
F.Baiardi — Security of Cloud Computing — Introspection

Tainting

APPROACH

*Track OS-level information flow
provenance by assigning a unique

LSSD

identifier (color) to each potential

malware entry point 4* .

*Color individual processes/data based ’
on their interaction with potential entry Attacker

points or other previously colored
processes/data

*Color-based identification of malware
contaminations

Vlrtual Machine
Mg_m h

Ori S

MySQL 5\ s Sen;jmal Apach
ISRt Y A 5~

*Color-based reduction of log data to be
analyzed

Guest OS

Virtual Machine Monitor (VMM)

*Highlight event anomalies via abnormal
color interactions present in logs

*Leverage virtual machine technology
for tamper resistance of log coloring

F.Baiardi — Security of Cloud Computing — Introspection

85

Dynamic taint analysis

Taint analysis should be applied anytime a malicious user input
can be the vector of an attack. Very important even in the case of
web applications.

Mark input data as “tainted”

Monitor program execution to track how tainted attributes
propagate

Check when tainted data is used in dangerous ways

86
F.Baiardi — Security of Cloud Computing — Introspection

Dynamic taint analysis

TaintCheck performs dynamic taint analysis on a program by running the
program in its own emulation environment.

X8&6 1nstructions

UCode

Binary re-writer
Taint Check

—

X8&6 1nstructions

UCode

Dynamic taint analysis

87
F.Baiardi — Security of Cloud Computing — Introspection

Dynamic taint analysis

‘ Exploit Analyzer
Taint seed TaintTracker TaintAssert
— > Useas | Attack detected
Memory byte / Fn pointer
untainted
Shadow Memory Shadow Memory
X Taint Data structure* TaintCheck

*TDS holds the system call number, a snapshot of the current stack, and a copy of the data that was written

88
F.Baiardi — Security of Cloud Computing — Introspection

Dynamic taint analysis

TaintSeed

— It marks any data from untrusted sources as “tainted”

« Each byte of memory has a four-byte shadow memory that stores a
pointer to a Taint data structure if that location is tainted, or a NULL
pointer if it is not.

Memory is mapped to TDS

89
F.Baiardi — Security of Cloud Computing — Introspection

TaintTracker

— It tracks each instruction that manipulates data in order to

Dynamic taint analysis

determine whether the result is tainted.

* When the result of an instruction is tainted by one of the operands,
TaintTracker sets the shadow memory of the result to point to the

same Taint data structure as the tainted operand.

Memory is mapped to TDS

Result 1s mapped to TDS

F.Baiardi — Security of Cloud Computing — Introspection

Dynamic taint analysis

TaintAssert

— It checks whether tainted data is used in ways that its policy

defines as illegitimate.

Memory is mapped to TDS

Operand is mapped to TDS

<«—— vulnerability

F.Baiardi — Security of Cloud Computing — Introspection

91

Dynamic taint analysis

Exploit Analyzer

— The Exploit Analyzer can provide useful information about how
the exploit happened, and what the exploit attempts to do.

Memory is mapped to TDS

Operand is mapped to TDS

<«—— vulnerability

F.Baiardi — Security of Cloud Computing — Introspection

92

Dynamic taint analysis

Types of attacks detected by TaintCheck are

— Qverwrite attack

* jump targets (such as return addresses, function pointers,
and function pointer offsets), whether altered to point to
existing code (existing code attack) or injected code (code
injection attack).

— Format string attacks

 an attacker provides a malicious format string to trick the
program into leaking data or into writing an attacker-chosen
value to an attacker-chosen memory address.

— E.g.. use of %s and %x format tokens to print data from the stack or
possibly other locations in memory.

93
F.Baiardi — Security of Cloud Computing — Introspection

Dynamic taint analysis

Why to use TaintCheck ?

— Does not require source code or specially compiled
binaries.

— Reliably detects most overwrite attacks.
— Has no known false positives.

— Enables automatic semantic analysis based signature
generation.

F.Baiardi — Security of Cloud Computing — Introspection

94

Evaluation

False Negatives

— A false negative occurs if an attacker can cause sensitive data to
take on a value without that data becoming tainted.
- Eg.if(x==0)y=0;elseif(x==1)y=1,; ...

— If values are copied from hard-coded literals, rather than
arithmetically derived from the input.
— IS translates ASCII input into Unicode via a table
— If TaintCheck is configured to trust inputs that should not be
trusted.

— data from the network could be first written to a file on disk, and then read back
into memory.

95
F.Baiardi — Security of Cloud Computing — Introspection

Evaluation

False Positives

— TaintCheck detects that tainted data is being used in an
illegitimate way even when there is no attack taking place.

* |t indicates, there are vulnerabilities in the program

— E.g. A program uses tainted data as a format string, but makes sure it does not
use it in a malicious way.

96
F.Baiardi — Security of Cloud Computing — Introspection

Evaluation

Synthetic

— To detect
* Overwritten return addresses
* Overwritten function pointer
* Format string vulnerability
Actual exploits
— ATPhttpd exploit (buffer overflow)
— Cfingerd exploit (format string vulnerability)
— Wu-ftpd exploit (format string vulnerability)

F.Baiardi — Security of Cloud Computing — Introspection

97

Evaluation

Program Overwrite Method Overwrite Target | Detected
ATPhttpd buffer overflow return address v
synthetic buffer overflow function pointer v
synthetic buffer overflow format string 4
synthetic format string none (info leak) v
cfingerd syslog format string GOT entry v
wu-ftpd | venprintf format string return address v

F.Baiardi — Security of Cloud Computing — Introspection

98

Evaluation

Performance
— CPU bound
— a 2.00 GHz Pentium 4, and 512 MB of RAM, running RedHat 8.0. was used to
compress bzip2(15mb)
» Normal runtime 8.2s
» Valgrind nullgrind skin runtime25.6s (3.1 times longer)
» Memcheck runtime 109s (13.3 times longer)
» TaintCheck runtime 305s (37.2 times longer)
— Short-lived

— Common case

99
F.Baiardi — Security of Cloud Computing — Introspection

Evaluation

Performance
— CPU bound

— Short-lived

* Basic blocks are cached and hence the penalty is acceptable over
long lived programs. For short lived programs it is still significantly
large

» Normal runtime for Cfingerd was0.0222s
» Valgrind nullgrind skin runtime took 13 times longer
» Memcheck runtime took 32 times longer
» TaintCheck runtime took 13 times longer

— Common case

100
F.Baiardi — Security of Cloud Computing — Introspection

Evaluation

Performance
— CPU bound
— Short-lived

— Common case

* For network services the latency experienced is due to network
and/or disk I/0O and the TaintCheck performance penalty should not
be noticeable

101
F.Baiardi — Security of Cloud Computing — Introspection

Application

It is not practical to implement TaintCheck as a
standalone due to the performance overhead
— TaintCheck enabled honeypots could use TaintCheck to
monitor all of its network services

» TaintCheck will verify the exploit and provide additional
information about the detected attack

— TaintCheck with OS randomization

* identify which request contained an attack and generate
signature for the attack or blocking future requests from the
user.

— TaintCheck in a distributed environment

102
F.Baiardi — Security of Cloud Computing — Introspection

Evaluation

Performance
30

[B MNo Valgrind]
= 25 -] H MNullgrind —
E B Bl Memcheck i
2 Fl TaintCheclk
= 20— —]
= 15 —
Z 10 —
£ 5 .

1 KB 10 KB 100 KB 1 WnIBE 10 ™A
563 1ms BT ms 205 ms O 79O mis 264 ms 251 ms

F.Baiardi — Security of Cloud Computing — Introspection

103

Application

Automatic semantic analysis based signature generation

— as it monitors how each byte of each attack payload is used by the
vulnerable program at the processor-instruction level.

ST

J—

/)

I"\ T
Internet N
— .
=
Pl . 1 '-.1‘?35"”
l\\ // Q‘(‘\ "
. — r 8]
, - Ty
.
-
J#
=
S
U
LA
s
-._e‘*\}'r
= Internal
Q_z.“_"';“.f’ Netwaork
_ ——
New Worm Samples + Semantic Information=—__ ._{-:::'
Y
Content Pattern Extractor TamntCheck

104
F.Baiardi — Security of Cloud Computing — Introspection

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Diapositiva 51
	Diapositiva 52
	Diapositiva 53
	Diapositiva 54
	Diapositiva 55
	Diapositiva 56
	Diapositiva 57
	Diapositiva 58
	Diapositiva 59
	Diapositiva 60
	Diapositiva 61
	Diapositiva 62
	Diapositiva 63
	Diapositiva 64
	Diapositiva 65
	Diapositiva 66
	Third generation: Intel VT-d & AMD IOMMU
	Diapositiva 68
	Diapositiva 69
	Diapositiva 70
	Diapositiva 71
	Diapositiva 72
	Diapositiva 73
	Diapositiva 74
	Diapositiva 75
	Diapositiva 76
	Diapositiva 77
	Diapositiva 78
	Diapositiva 79
	Diapositiva 80
	Diapositiva 81
	Diapositiva 82
	Diapositiva 83
	Diapositiva 84
	Diapositiva 85
	Dynamic taint analysis
	Diapositiva 87
	Diapositiva 88
	Diapositiva 89
	Diapositiva 90
	Diapositiva 91
	Diapositiva 92
	Diapositiva 93
	Diapositiva 94
	Evaluation
	Diapositiva 96
	Diapositiva 97
	Diapositiva 98
	Diapositiva 99
	Diapositiva 100
	Diapositiva 101
	Application
	Diapositiva 103
	Diapositiva 104

