Annalisa Bossi, Damiano Macedonio, Riccardo Focardi, Carla Piazza, and Sabina Rossi

> Dipartimento di Informatica Università Ca' Foscari di Venezia

{bossi,mace,focardi,piazza,srossi}@dsi.unive.it

Pisa, November 2003

Protect Confidential Data in a Multilevel System

- Information Flow Security aims at guaranteeing that no high level (confidential) information is revealed to users at low level, even in the presence of any possible malicious process
- Non-Interference: information does not flow from high to low if the high behavior has no effect on what low level can observe
- Dynamicity: a program which is in a secure state for a certain environment might become unprotected if the environment suddenly changes

Problem: incrementally build, rectify, and verify secure processes

Plan of the Talk

- The Security Process Algebra Language
- Information Flow Security as Unwinding Conditions
- ▷ Some instances: P_BNDC, SBNDC, CP_BNDC, PP_BNDC
- Incrementally Build secure processes
- Rectify non secure processes
- Verify security properties

The SPA syntax

E	::=	0	empty process
		a.E	input
		$\bar{a}.E$	output
		au.E	internal action
		E + E	non-det. choice
		$E \mid E$	parallel composition
		$E\setminus v$	restriction
		E[f]	relabelling
		Z	constant

 \triangleright *H* high actions and *L* low actions

The SPA semantics - Transitions

Semantics given through transition relations \rightarrow among processes defined by axioms and inference rules

Two processes are equivalent if they are weakly bisimilar: $E \approx_B F$

The SPA semantics - Bisimulation

- Idea: bisimulation is a mutual step-by-step simulation
- $\triangleright E1 = a.b.\mathbf{0} + a.\mathbf{0} \qquad E2 = a.b.\mathbf{0} + a.\mathbf{0} + a.\mathbf{0} \qquad E3 = a.b.\mathbf{0}$

- \triangleright *E*1 and *E*2 are bisimilar and they both simulate *E*3
- $\triangleright E3$ can simulate the rightmost *a* of E1, but it is not bisimilar to E1

Information Flow and Persistency

- Information Flow Security aims at guaranteeing that no high level (confidential) information is revealed to users at low level, even in the presence of any possible malicious process
- Non-Interference: information does not flow from high to low if the high behavior has no effect on what low level can observe
- Dynamicity: a program which is in a secure state for a certain environment might become unprotected if the environment suddenly changes

Persistency: if a security property is persistent, i.e., a secure process reaches only secure processes, then it ensures security in dynamic contexts

user

Security as Unwinding - Intuition

If the high level user can perform h reaching E'' from E', then also E''' is reachable from E' and E'' and E''' are undistinguishable for the low level

CP_BNDC, PP_BNDC, SNDC

Security as Unwinding - Formalization

Let \sim^l be a low level observational equivalence

Let --→ be a reachability relation

Generalized Unwinding

 $\mathcal{W}(\sim^{l}, \dashrightarrow) = \{ E \in \mathcal{E} \mid \forall F, G \in Reach(E), \text{ if } F \xrightarrow{h} G \text{ then} \\ \exists G' \text{ such that } F \dashrightarrow G' \text{ and } G \sim^{l} G' \}$

The P_BNDC property

Aim: check all the states reachable by the system against all high level (potentially malicious) processes

Persistent BNDC: $\forall E'$ reachable from $E, \forall \Pi \in \mathcal{E}_H \ E' \approx^l_B E' | \Pi$

P_BNDC and Unwinding

Weak Bisimulation on Low Actions

$$\mathcal{S} \subseteq \mathcal{E} \times \mathcal{E}$$
 such that if $(E, F) \in \mathcal{S}$ then for all $l \in L \cup \{\tau\}$:
 $E \stackrel{l}{\to} E'$ implies $F \stackrel{\hat{l}}{\Longrightarrow} F'$ and $(E', F') \in \mathcal{S}$
 $F \stackrel{l}{\to} F'$ implies $E \stackrel{\hat{l}}{\Longrightarrow} E'$ and $(E', F') \in \mathcal{S}$
 $E \approx_B^l F$ if $(E, F) \in \mathcal{S}$ weak bisimulation on low actions

Silent Reachability

 $E \stackrel{\hat{\tau}}{\Longrightarrow} F$ if E reaches F with a sequence of τ actions.

$$E \in \mathsf{P}_{-}\mathsf{BNDC}$$
 if and only if $E \in \mathcal{W}(\approx^{l}_{B}, \stackrel{\hat{\tau}}{\Longrightarrow})$

Other Security Properties

- SBNDC is equivalent to $\mathcal{W}(pprox_B^l,\equiv)$
- **CP_BNDC** is equivalent to $\mathcal{W}(pprox_B^l)$
- **PP_BNDC** is equivalent to
- **SNDC** is equivalent to \mathcal{W}

$$\mathcal{W}(\approx_B, \equiv)$$
$$\mathcal{W}(\approx_B^l, \stackrel{\tau}{\Longrightarrow})$$
$$\mathcal{W}(\approx_P^l, \stackrel{\tau}{\Longrightarrow})$$
$$\mathcal{W}(\approx_T^l, \equiv)$$

Development of Complex Systems

The systematic development of complex systems usually relies on

Composition: building blocks are put together (e.g., parallel composition)

The composition of secure parts has to be secure as a whole

Compositional Non-Interference properties have been studied

Refinement: abstract specifications are refined into more concrete ones

Non-Interference properties based on sets of execution sequences are hard to preserve under refinement

Unwinding and Compositions - General Result

Let f be a partial function and \odot be a relation

f preserves \odot iff

 $G \odot G'$ implies $(f(G) \uparrow \text{ and } f(G') \uparrow)$ or $(f(G) \odot f(G'))$ f reflects \odot iff

 $f(G) \odot M$ implies $G \odot G'$ and f(G') = M

Composition Theorem

If f reflects \xrightarrow{h} and reachability and it preserves \sim^{l} and $-\rightarrow$, then $\mathcal{W}(\sim^{l}, -\rightarrow)$ is compositional w.r.t. f, i.e.,

 $F \in \mathcal{W}(\sim^l, \dashrightarrow)$ implies $f(F) \in \mathcal{W}(\sim^l, \dashrightarrow)$

Unwinding and Compositions - Application

P_BNDC, SBNDC, CP_BNDC, and PP_BNDC

are compositional w.r.t.

 $X \setminus v$ X[f] X|Y

The Composition Theorem cannot be applied to !X and X + YP_BNDC, SBNDC, CP_BNDC, and PP_BNDC are compositional w.r.t. !XCP_BNDC and PP_BNDC are compositional w.r.t. X + Y

Horizontal Refinement - Intuition

A refined specification should never show behaviors that were not foreseen in the initial specification

▷ each abstract state is refined into at most one concrete state

▷ the abstract state simulates its refinement, i.e., if the refinement E of F performs an action a reaching E', then F can perform a reaching F' whose refinement is E'

Horizontal Refinement - Formalization

Simulation

 $\mathcal{S} \subseteq \mathcal{E} \times \mathcal{E}$ such that if $(E, F) \in \mathcal{S}$ then for all a: $E \xrightarrow{a} E'$ implies $F \xrightarrow{a} F'$ and $(E', F') \in \mathcal{S}$

Refinement

 $\mathcal{R} \subseteq \mathcal{E} \times \mathcal{E}$ over SPA processes such that:

 ${\mathcal R}$ is a partial function from ${\mathcal E}$ to ${\mathcal E}$

 \mathcal{R}^{-1} is a simulation

 $E \preceq F$, i.e., E is a refinement of F, if there exists a refinement \mathcal{R} such that $\mathcal{R}(F) = E$

Consider a binary memory cell

We refine it into a high level cell by imposing no read up

Properties of the Refinements

- ▷ Refinement and Reachability: if $\mathcal{R}(F) = E$, $\mathcal{R} \cap (Reach(F) \times Reach(E))$ is a refinement
- ▷ Mutual Refinement: if *F* is finite state and $F \leq E \leq F$, $F \sim_B E$
- $\triangleright \text{ Compositionality of Refinement: if } \mathcal{R}(F) = E \text{ and } \mathcal{R}(G) = I,$ $\triangleright a.E \leq a.F, \text{ if } a.F \notin Reach(F)$ $\triangleright E + I \leq F + G, \text{ if } F + G \notin Reach(F) \cup Reach(G)$ $\triangleright E|I \leq F|G, E \setminus v \leq F \setminus v, E[f] \leq F[f]$

Refinements preserving Unwinding

Unwinding Theorem

 $F \in \mathcal{W}(\sim^l, \dashrightarrow) \quad \text{implies} \quad \mathcal{R}(F) \in \mathcal{W}(\sim^l, \dashrightarrow)$

Composition Theorem

If \mathcal{R}_1 and \mathcal{R}_2 preserve \odot , then $\mathcal{R}_1 \circ \mathcal{R}_2$ preserves \odot

Unwinding and Rectification

 $E \text{ not secure} \implies E^s \text{ secure}$

Let *s* be a sequence of actions such that $E \xrightarrow{s} F$ implies $E \xrightarrow{} F$ Given E = l.F + h.G we define

$$E^s = l.F^s + \mathbf{h}.G^s + s.G^s$$

Rectification Theorem For all E, $E^s \in \mathcal{W}(\sim^l, -\rightarrow)$

This can be applied to P_BNDC, CP_BNDC, PP_BNDC with $s = \tau$

Unwinding and Verification

Decidability Theorem

Let E be a finite state process, $-\rightarrow$ and \sim^l be decidable over finite state processes,

$$E \in W(\sim^l, { extsf{---}})$$
 is decidable

This is usually inefficient!

To efficiently check P_BNDC, SBNDC, PP_BNDC we use a global bisimulation based characterization implemented in CoPS (see our case-study presentation)

Verifying Persistent Security Properties

System treeview	Main menu	Editor pane	Toolbar			
Stops - Checker of Pers	sistent Security - C:\Documents and	Settings\Pivot\Desktop\Tesi\sito\examples\Ac	cess_Monitor.spa			
File Edit Look&Feel Too	ol <u>H</u> elp					
D 🚅 🖪 🧔 🤤	D 🕑 🐰 P_BNDC	💌 🗆 Compositional 🖌 💿 🛕 🍕				
 System Access_Monitor AM Monitor Object_I0 Object_I1 Object_h0 Object_h1 Interface Interface_I L N acth 	<pre>bi Access_Homitor (Aft Interface)) H bi Aft (Somitor Object_h0 bi Nomitor access_c_h1.(c10.'val_10.) access_c_h1.(c10.'val_h0.) access_c_h1.(c10.'val_h0.) access_c_h1.(ch0.'val_h0.) access_v_h10.'v10.Somitor access_v_h10.'v10.Somitor access_v_h10.'v10.Somitor access_v_h10.Somitor + access_v_h10.Somitor + access_v_h10.Somitor</pre>	Object_10) \ L lantter + r11. 'val_11. Hentter) + itter + lantter + r11. 'val_h1. Hentter) + lantter + rh1. 'val_h1. Hentter) + + + + + + + + + - - - - - - - - - - - - -				
		e access_w_h0				
Syntax is correct!						
Agent Object_10						
Starting graph generator						
Starting graph transfor Elapsed time to transfor Executing FBA Elapsed time to execute ** The system verifies	<pre>cmation orm graph: 0.00 seconds. e FBA: 0.00 seconds. e the P_BNDC property. ** </pre>		(wl1)wl0 Object_l1) wl1)'rl1			
Check done!			Elapsed time: 00:00			
Status bar	Kernel message	s area Code auto-completion	Graph viewer			

 \sim observational equivalence, used to equate two processes

 \cdot_l low level view which determines

 E_l : low level behavior of the process E

 \sim_l : low level equivalence ($E \sim_l F$ stands for $E_l \sim F_l$)

 \mathcal{C} class of contexts, \mathcal{P} class of processes, and X a variable. \mathcal{C} is secure for \mathcal{P} with respect to X if $\forall C[X] \in \mathcal{C}, \forall E \in \mathcal{P}, \ C[E] \sim_l C[E_l]$

A low level user cannot discern whether C is interacting with E or E_l

Secure Contexts - II

- ▷ The notion of secure context for a process is parametric, i.e.,
 - ▷ it can be used to restrict the set of possible attackers

(e.g., if some level passwords cannot be guessed)

- it allows to enlarge the set of possible attackers
 (SPA operators can be combined in the contexts construction)
- ▷ We studied two instances: bisimulation and trace equivalence
- ▷ We showed that BNDC and NDC are instances of our notion

Conclusions

- we considered Unwinding conditions defining security properties
- ▷ we analyzed how to
 - ▷ incrementally build secure systems via
 - * composition
 - * refinement
 - ▷ rectify unsecure systems
 - ▷ efficiently verify security
- ▷ we implemented a tool for efficient security verification
- we considered Secure Contexts to relax the security conditions

References 2002

- R. Focardi and S. Rossi. Information Flow Security in Dynamic Contexts CSFW 2002, IEEE, pagg. 307–319.
- R. Focardi, C. Piazza, and S. Rossi. Proofs Methods for Bisimulation based Information Flow Security VMCAI 2002, LNCS 2294, pagg. 16–31.
- A. Bossi, R. Focardi, C. Piazza, and S. Rossi. Transforming Processes to Check and Ensure Information Flow Security AMAST 2002, LNCS 2422, pagg. 271–286.
- A. Bossi, R. Focardi, C. Piazza, and S. Rossi. A Proof System for Information Flow Security LOPSTR 2002, LNCS 2264, pagg. 199–218.

References 2003

- A. Bossi, R. Focardi, C. Piazza, and S. Rossi. Bisimulation and Unwinding for Verifying Possibilistic Security Properties VMCAI 2003, LNCS 2575, pagg. 223–237.
- A. Bossi, D. Macedonio, C. Piazza, and S. Rossi. Information Flow Security and Recursive Systems ICTCS 2003, LNCS ??, pagg. ??.
- A. Bossi, R. Focardi, C. Piazza, and S. Rossi. Refinement Operators and Information Flow Security SEFM 2003, IEEE, pagg. 44–53.
- A. Bossi, D. Macedonio, C. Piazza, and S. Rossi. Secure Contexts for Confidential Data CSFW 2003, IEEE, pagg. 14–25.
- A. Bossi, R. Focardi, C. Piazza, and S. Rossi. Verifying Persistent Security Properties To appear in Computer Languages, Systems and Structures
- C. Piazza, E. Pivato, and S. Rossi. CoPS Checker of Persistent Security Submitted to conference.