# Models of Computation 

## Midterm Exam on April 9, 2010

## Exercise 1 (12)

Extend IMP with: (i) the new syntactic category $S$ (with variables $s$ ) of expressions with side effects, shortly elat, having $\langle s, \sigma\rangle \rightarrow\left(\sigma^{\prime}, n\right)$ as well formed formulas for the operational semantics and semantic domain $\Sigma \rightarrow(\Sigma \times N)_{\perp}$; and (ii) the new productions

$$
s::=c ; a \quad c::=x:=s
$$

with the following informal semantics: for the first production, the meaning is to return the memory produced by the command $c$ as modified memory by elat $s$; and the evaluation of the arithmetic expression $a$ in such a memory as result of $s$. For the second production, the meaning is first to evaluate $s$ and then to execute the assignment, employing the memory modified by $s$ as memory, and the result of $s$ as value to assign to $x$.

The denotational semantics is as follows:

$$
\begin{aligned}
\mathcal{S} \llbracket c ; a \rrbracket \sigma= & \left(\lambda \sigma^{\prime} \cdot\left(\sigma^{\prime}, \mathcal{A} \llbracket a \rrbracket \sigma^{\prime}\right)\right)^{*}(\mathcal{C} \llbracket c \rrbracket \sigma) \\
\mathcal{C} \llbracket x:=s \rrbracket \sigma= & \text { case } \mathcal{S} \llbracket s \rrbracket \sigma \text { of : } \\
& \perp_{(\Sigma \times N)_{\perp}: \perp_{\Sigma_{\perp}}} \\
& \left(\sigma^{\prime}, n\right): \sigma^{\prime}[n / x] .
\end{aligned}
$$

Define the operational semantics of the two new constructs and evaluate the command $x:=(x:=$ $3 ; 5)$ according to both the operational and the denotational semantics. Prove the operational - denotational equivalence and show (employing either the operational or the denotational semantics) that $x:=(c ; a)$ is equivalent to $c ; x:=a$.

## Exercise 2 (8)

Consider the context free (more precisely, right linear) grammar $S::=\alpha S \mid \beta$, where the terminal alphabet is $V=\{a, b\}$, with $\alpha, \beta \in V^{*}$. Derive the inference rules $R$ corresponding to such a grammar and prove (in both ways) that the set of theorems is $I_{R}=\left\{\alpha^{n} \beta \in S \mid n \in \omega\right\}$.

Then consider the immediate consequences operator $\hat{R}$ and check that $I_{R}$ is its minimal fixpoint. Finally, discuss if other fixpoints exist for particular values of $\alpha$ and $\beta$.

## Exercise 3 (10)

The binomial coefficients $\binom{n}{k}$, with $n, k \in \omega$ e $0 \leq k \leq n$, asre defined by:

$$
\binom{n}{0}=\binom{n}{n}=1 \quad\binom{n+1}{k+1}=\binom{n}{k}+\binom{n}{k+1}
$$

Prove that the above definition is given by well-founded recursion, specifying the well-founded relation and the corresponding function $F(b, h)$.

Then consider the HOFL program:

$$
t=r e c f . \lambda n . \lambda k \text {.if } k \text { then } 1 \text { else if } n-k \text { then } 1 \text { else }((f n-1) k)+((f n-1) k-1),
$$

compute its type and evaluate the canonical form of the term $((t 2) 1)$.

