Models of Computation

Midterm Exam on April 9, 2010

Exercise 1 (12)

Extend IMP with: (i) the new syntactic category S (with variables s) of expressions with side effects, shortly elat, having $\langle s, \sigma \rangle \to (\sigma', n)$ as well formed formulas for the operational semantics and semantic domain $\Sigma \to (\Sigma \times N)_{\perp}$; and (ii) the new productions

$$s ::= c; a$$
 $c ::= x := s$

with the following informal semantics: for the first production, the meaning is to return the memory produced by the command c as *modified memory* by elat s; and the evaluation of the arithmetic expression a in such a memory as *result* of s. For the second production, the meaning is first to evaluate s and then to execute the assignment, employing the memory modified by s as memory, and the result of s as value to assign to x.

The denotational semantics is as follows:

$$\mathcal{S}\llbracket c; a \rrbracket \sigma = (\lambda \sigma' . (\sigma', \mathcal{A}\llbracket a \rrbracket \sigma'))^* (\mathcal{C}\llbracket c \rrbracket \sigma)$$

$$\mathcal{C}\llbracket x := s \rrbracket \sigma = \operatorname{case} \mathcal{S}\llbracket s \rrbracket \sigma \text{ of } :$$

$$\begin{array}{c} \bot_{(\Sigma \times N)_{\perp}} : \bot_{\Sigma_{\perp}} \\ (\sigma', n) : \sigma' [n/x]. \end{array}$$

Define the operational semantics of the two new constructs and evaluate the command x := (x := 3; 5) according to both the operational and the denotational semantics. Prove the operational - denotational equivalence and show (employing either the operational or the denotational semantics) that x := (c; a) is equivalent to c; x := a.

Exercise 2 (8)

Consider the context free (more precisely, right linear) grammar $S ::= \alpha S | \beta$, where the terminal alphabet is $V = \{a, b\}$, with $\alpha, \beta \in V^*$. Derive the inference rules R corresponding to such a grammar and prove (in both ways) that the set of theorems is $I_R = \{\alpha^n \beta \in S | n \in \omega\}$.

Then consider the immediate consequences operator R and check that I_R is its minimal fixpoint. Finally, discuss if other fixpoints exist for particular values of α and β .

Exercise 3 (10)

The binomial coefficients $\binom{n}{k}$, with $n, k \in \omega \in 0 \leq k \leq n$, as redefined by:

$$\binom{n}{0} = \binom{n}{n} = 1 \qquad \qquad \binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$$

Prove that the above definition is given by well-founded recursion, specifying the well-founded relation and the corresponding function F(b, h).

Then consider the HOFL program:

$$t = rec f \cdot \lambda n \cdot \lambda k \cdot if k$$
 then 1 else if $n - k$ then 1 else $((f n - 1) k) + ((f n - 1) k - 1) \cdot k - 1)$

compute its type and evaluate the canonical form of the term $((t \ 2) \ 1)$.