Models of Computation

Written Exam on September 2, 2011

(MOD students: Exercises 1-5, 180 minutes
Previous TSD students: Exercises 1-3, 120 minutes)

Exercise 1 (7)

Assume that $<$ while b do $c, \sigma>\rightarrow \sigma^{\prime} \Rightarrow<b, \sigma^{\prime}>\rightarrow$ false and the corresponding denotational property, namely $\mathcal{C} \llbracket$ while b do $c \rrbracket \sigma=\sigma^{\prime} \Rightarrow \mathcal{B} \llbracket b \rrbracket \sigma^{\prime}=$ false.

Prove, employing both the operational and the denotational semantics (but not their equivalence!) that the commands

$$
c_{1}=(\text { while } b \text { do } c) ; \text { while } b \text { do } c \quad c_{2}=\text { while } b \text { do }(c ; \text { while } b \text { do } c)
$$

are equivalent.

Exercise 2 (6)

Let $(\mathcal{P}(\omega), \subseteq)$ be the cpo with bottom consisting of the subsets of natural numbers ordered by inclusion. Every term F of the abstract syntax

$$
F::=X|F \cup F| F \cap F \mid C \quad \text { con } \quad C \in \mathcal{P}(\omega)
$$

represents, according to the following definition by structural induction,

$$
\llbracket X \rrbracket(S)=S \quad \llbracket F_{1} \cup F_{2} \rrbracket(S)=\llbracket F_{1} \rrbracket(S) \cup \llbracket F_{2} \rrbracket(S) \quad \llbracket F_{1} \cap F_{2} \rrbracket(S)=\llbracket F_{1} \rrbracket(S) \cap \llbracket F_{2} \rrbracket(S) \quad \llbracket C \rrbracket(S)=C
$$

a function $\llbracket F \rrbracket: \mathcal{P}(\omega) \rightarrow \mathcal{P}(\omega)$.
Prove by structural induction that all the functions $\llbracket F \rrbracket$ are (i) monotone (ii) continuous.

Exercise 3 (7)

Modify the semantics of HOFL assuming the following operational semantics for the conditional command:

$$
\frac{t_{0} \rightarrow 0 t_{1} \rightarrow c_{1} t_{2} \rightarrow c_{2}}{\text { if } t_{0} \text { then } t_{1} \text { else } t_{2} \rightarrow c_{1}} \quad \frac{t_{0} \rightarrow n n \neq 0 t_{1} \rightarrow c_{1} t_{2} \rightarrow c_{2}}{\text { if } t_{0} \text { then } t_{1} \text { else } t_{2} \rightarrow c_{2}}
$$

Exibit the corresponding denotational semantics and prove that also for the modified semantics it holds that $t \rightarrow c$ implies $\llbracket t \rrbracket=\llbracket c \rrbracket$. Finally, compute the operational and the denotational semantics of (fact 0), with fact $=\operatorname{rec} f . \lambda x$. if x then 1 else $x \times(f(x-1))$, and check if they coincide..

Exercise 4 (5)

Let us consider the π-calculus with the additional operations $P::=\left(\nu_{y}\right) P, P::=\left(o_{y}\right) P$ and $P::=\bar{x}(y) . P$. The new operations are characterized by the following axioms:
(i) $(y) P=\left(\nu_{y}\right) P+\left(o_{y}\right) P$; (ii) $\left(\nu_{y}\right) \alpha . P=$ if $y \in n(\alpha)$ then nil else $\alpha \cdot(y) P$; (iii) $\left(\nu_{y}\right)(P+Q)=\left(\nu_{y}\right) P+\left(\nu_{y}\right) Q$;
(iv) $\left(o_{y}\right) \bar{x} y . P=$ if $x=y$ then nil else $\bar{x}(y) . P ;(v)\left(o_{y}\right)(P+Q)=\left(o_{y}\right) P+\left(o_{y}\right) Q$; and (vi) $\left(\nu_{y}\right) n i l=\left(o_{y}\right) n i l=$ nil. Define inference rules also for the new operators $P::=\left(\nu_{y}\right) P, P::=\left(o_{y}\right) P$ and $P::=\bar{x}(y) . P$. Furthermore, prove using the rules just defined that the axioms (i), (ii) and (iv) do bisimulate. Namely, given a generic transition of P, for (i); the transition $\alpha . P \xrightarrow{\alpha} P$, for (ii); and $\bar{x} y \cdot P \xrightarrow{\bar{x} y} P$ for (iv), every transition of the left hand side of the axiom should be matched by a transition of the right hand side (and viceversa) with the same action and with continuations which can be proved equivalent using the axioms.

Exercise 5 (5)

In a multiprocessor system with shared memory, processes must compete to use the memory bus. Consider the case of two identical processes. Each process has cyclic behaviour: it performs some local activity (local action think), accesses the bus (synchronization action get), operates on the memory (local action use) and then releases the bus (synchronization action rel). The bus has cyclic behavior with actions get and rel. Define a PEPA program representing the system and derive the corresponding CTMC (with actions). Find the bisimilar states and draw the minimal CTMC.

