Models of Computation

Written Exam on June 24, 2011
(First part: Exercises 1 and 2, 90 minutes
Second part: Exercises 3, 4 and 5, 90 minutes)
(Previous TSD students: Exercises 1, 2 and 3, 135 minutes)

Exercise 1 (8)

Let us replace the while command of IMP with the new command until x LE n step k do c, with k positive natural number and $x \notin F V(c)$. The until command keeps executing c increasing every time x by k until it becomes larger than integer n. Its operational semantics is as follows:

$$
\begin{gathered}
\frac{\sigma(x)>n}{<\text { until } x \text { LE } n \text { step } k \text { do } c, \sigma>\rightarrow \sigma} \\
\frac{\sigma(x) \leq n<c ; x:=x+k, \sigma>\rightarrow \sigma^{\prime \prime}<\text { until } x \text { LE } n \text { step } k \text { do } c, \sigma^{\prime \prime}>\rightarrow \sigma^{\prime}}{<\text { until } x \text { LE } n \text { step } k \text { do } c, \sigma>\rightarrow \sigma^{\prime}}
\end{gathered}
$$

Define the denotational semantics of the new construct and prove the equivalence of the two semantics. Finally, assuming that $\left\langle c, \sigma>\rightarrow \sigma^{\prime} \Rightarrow \sigma(x)=\sigma^{\prime}(x)\right.$ prove that in the new version of IMP all commands do terminate. (Hint: Prove the property by structural induction on commands. Consider only the until construct. Observe that in a goal oriented computation the value of $n-\sigma(x)$ strictly decreases, and when it becomes smaller that 0 the execution terminates.)

Exercise 2 (7)

Let us consider the set $(\{0,1, \ldots, N-1\} \times \omega) \cup\{(N, 0)\}$ of pairs of natural numbers with the lexicographical relation \sqsubseteq defined as $\left(n_{1}, m_{1}\right) \sqsubseteq\left(n_{2}, m_{2}\right)$ if $n_{1}<n_{2}$ or if $n_{1}=n_{2}$ and $m_{1} \leq m_{2}$. Prove that \sqsubseteq is a complete partial ordering with bottom, which is also a total ordering, namely for every pair $\left(n_{1}, m_{1}\right)$, $\left(n_{2}, m_{2}\right)$, either $\left(n_{1}, m_{1}\right) \sqsubseteq\left(n_{2}, m_{2}\right)$ or $\left(n_{2}, m_{2}\right) \sqsubseteq\left(n_{1}, m_{1}\right)$, or both. Finally, given the function $f:(\{0,1, \ldots, N-1\} \times \omega) \cup\{(N, 0)\} \rightarrow \omega \cup\{\infty\}$ (where $\omega \cup\{\infty\}$ is ordered with $n \leq n+k, x \leq \infty)$ defined as $f(n, m)=n+m$, show that it is not monotone, while $g:\{0,1, \ldots, n-1\} \times \omega \rightarrow \omega \cup\{\infty\}$, defined as $g(n, m)=n$, is monotone but not continuous.

Exercise 3 (6)

Show which are the processes reachable from $p=(($ rec $x .(\alpha . x \mid \beta . n i l))|(\operatorname{rec} x . \bar{\alpha} . x)|($ rec $x .(\alpha . x \mid \gamma . n i l))) \backslash \alpha$ and from $p^{\prime}=$ rec $x .(\beta \cdot x+\gamma \cdot x)$ and prove that p and p^{\prime} are not strong bisimilar but that they are weak bisimilar. Structural axioms $p|q=q| p,(p \mid q)|r=p|(q \mid r), p \mid n i l=p$ and rec $x . p=p[r e c x . p / x]$ can be assumed.

Exercise 4 (5)

Consider the new LTS \mapsto for the π-calculus defined as

$$
\frac{p \xrightarrow{\alpha} q \quad \alpha \neq x(y)}{p \stackrel{\alpha}{\mapsto} q} \quad \frac{p \xrightarrow{x(y)} q}{p \stackrel{x}{\mapsto} \lambda y \cdot q \stackrel{w}{\mapsto} q[w / y]}
$$

Prove that on the new LTS the strong late ground bisimulations can be defined without considering input a special case, namely with only the first of the two clauses seen during the course. (Hint: given an Alice-Bob strategy for a LTS, derive a strategy for the other LTS, and viceversa.)

Exercise 5(4)

A probabilistic system has three possible states, idle, working and failure. From idle, the system can move with 50% probability to working, or otherwise it can remain in the same state. From working, the system returns idle with 90% probability and otherwise moves to failure. Finally, from failure the system moves with 50% probabiity to working, or otherwise remains in the same state. Define the DTMC corresponding to the description above, observe that the chain is ergodic, and compute the stationary probabilities.

