Models of Computation

Written Exam on February 1, 2012

(MOD students: Exercises 1-5, 180 minutes Previous TSD students: Exercises 1-3, 120 minutes)

Exercise 1 (7)

Extend IMP with the construct either c_{0} or c_{1} having the following operational semantics:

$$
\frac{<c_{0}, \sigma>\rightarrow \sigma^{\prime}}{<\text { either } c_{0} \text { or } c_{1}, \sigma>\rightarrow \sigma^{\prime}} \quad \frac{<c_{1}, \sigma>\rightarrow \sigma^{\prime}}{<\text { either } c_{0} \text { or } c_{1}, \sigma>\rightarrow \sigma^{\prime}} .
$$

Consider then the command:

$$
w_{n}=\text { while } x \neq n \text { do either } x:=2 \times x ; y:=y \times y \text { or } x:=2 \times x+1 ; y:=k \times y \times y
$$

Proof that for every $\sigma, \sigma^{\prime} \in \Sigma$ with $\left\langle w_{n}, \sigma\right\rangle \rightarrow \sigma^{\prime}$

$$
\text { if } \sigma(y)=k^{\sigma(x)} \quad \text { then } \sigma^{\prime}=\sigma\left[n / x, k^{n} / y\right] .
$$

Exercise 2 (6)

Prove that the relation $R_{S}=(\mathcal{P}(\omega) \backslash S, \subseteq)$ is a partial ordering for every class S of sets of natural numbers. Then exhibit a class \bar{S} such that $R_{\bar{S}}$ is not complete and has no minimum. Finally, prove that R_{S} is complete if S contains only finite sets.

Exercise 3 (7)

Modify HOFL, assigning the following semantics to the conditional construct:

$$
\frac{t_{0} \rightarrow 0 t_{1} \rightarrow c_{1} t_{2} \rightarrow c_{2}}{\text { if } t_{0} \text { then } t_{1} \text { else } t_{2} \rightarrow c_{1}} \quad \frac{t_{0} \rightarrow n n \neq 0 t_{1} \rightarrow c_{1} t_{2} \rightarrow c_{2}}{\text { if } t_{0} \text { then } t_{1} \text { else } t_{2} \rightarrow c_{2}} .
$$

Define the corresponding denotational semantics and proof that also for the modified semantics $t \rightarrow c$ implies $\llbracket t \rrbracket=\llbracket c \rrbracket$. Finally, derive both the operational and the denotational semantics of (fact 0), with fact $=\operatorname{rec} f . \lambda x$. if x then 1 else $x \times(f x-1)$, checking if they coincide or not.

Exercise 4 (5)

Define by structural induction the free names $f n(p)$ of a CCS agent p. Prove by rule induction on the operational semantics that $p \xrightarrow{\mu} q$ implies $f n(q) \subseteq f n(p)$. Show an example where $f n(q) \subset f n(p)$. Now consider the π-calculus, and show an example of $p \xrightarrow{\alpha} q$ where $f n(p) \subset f n(q)$.

Exercise 5 (5)

A reactive, probabilistic labelled transition system representing the options of a taxi driver has states s_{1} (parking), s_{2} (moving slowly looking for costumers) and s_{3} (busy with clients); actions p (stay in the parking) and m (move); and transition function α with $\alpha s_{1} p s_{3}=0.2, \alpha s_{1} p s_{1}=0.8, \alpha s_{1} m s_{2}=1$, $\alpha s_{2} x s_{2}=0.5, \alpha s_{2} x s_{3}=0.5, \alpha s_{3} x s_{1}=0.6$, and $\alpha s_{3} x s_{3}=0.4$, where x is any action p or m. Consider the two Markov chains obtained by letting the taxi driver choose always p or always m (in the former case disregard state s_{2}). Are they ergodic? In both cases compute the stationary probability distributions and the average costs and gains, knowing that the costs of states s_{1}, s_{2} and s_{3} are 0,2 and 5 , while the gains are 0,0 and 10 respectively. What is the most convenient choice?

Correarue Prova Scritie del 01/02/2012

2sercios 1
Divestrante per indaniove fulte prove

$$
\begin{aligned}
& P\left(\left\langle w_{m}, \sigma\right\rangle \rightarrow \sigma^{+}\right) \stackrel{d e f}{=} \nabla(\partial)=K^{\sigma(x)} \Rightarrow \sigma^{\prime}=\sigma[\pi / k, K / g] \\
& \frac{\sigma(x)=n}{\left\langle w_{n}-\sigma\right\rangle \Rightarrow \sigma} \quad P\left(\left\langle w_{n}, \sigma\right\rangle \rightarrow \sigma\right) \stackrel{d f}{=} \sigma(g)=K^{\sigma}(x) \\
& \Rightarrow \sigma=\sigma\left[\frac{n}{x}, \kappa^{n} / y\right] \text { Qwio da } \sigma(x)=w
\end{aligned}
$$

- Prima repoladi eiter-or

$$
\begin{aligned}
& \text { Leincr }\left(x:=2 x x ; y_{i}=y x y\right) \text { or }\left(x_{i}=2 x+1 ; y ;=k^{x} y \times y, r\right) \rightarrow \sigma^{\prime \prime} \Leftarrow \\
& \langle x:=2 \times x ; y:=y \times y, \sigma\rangle \rightarrow \sigma^{\prime \prime} \quad \sigma^{\prime \prime}=\sigma\left[2 \sigma(x) / x, \sigma(y)^{2} / y\right] \\
& \frac{\sigma(x) \neq w \sigma^{\prime \prime}=\sigma\left[z^{\sigma \sigma(x)} / x, \sigma(y)^{2} / g\right]\left\langle w_{w}, \sigma^{\prime \prime}\right\rangle \rightarrow \sigma^{\prime}}{\left\langle w_{w}, \Gamma\right\rangle \rightarrow \sigma}
\end{aligned}
$$

Assunviaulo; $\sigma(x) \neq \omega$ (he pero now servirä)

$$
\sigma^{\prime \prime}(y)=\kappa^{\sigma^{\prime \prime}(x)} \Rightarrow \sigma^{1}=\sigma^{\prime \prime}\left[\pi / x, \kappa^{n} / g\right] \quad \text { iptet induetliva }
$$

Dobleave dimostrare

$$
\sigma(y)=K^{\sigma(x)} \Rightarrow \sigma^{\prime}=\sigma\left[u / x, K^{n} / y\right]
$$

Asucuiduo la prowurde: $\sigma(y)=k^{\sigma(x)}$
Resta de dicuestrarc $\sigma^{\prime} \stackrel{?}{=}\left[m / x, K^{\mu} / g\right]$

$$
\sigma^{\prime \prime}(y)=\sigma(y)^{2} \quad \sigma^{\prime \prime}(x)=2 \sigma(x)
$$

$\sigma(y)^{2}=\left(K^{\sigma(x)}\right)^{2}$ aucora la preuterle
$\left.\sigma^{\prime \prime}(y)=区^{2 \sigma n}\right) \equiv \sigma^{\prime \prime}(x) \quad$ quindi $\sigma^{\prime}=\sigma^{n}\left[\omega / x+K^{4} / g\right]$ datla ipotesindi. $C \| D$

- Seconda regola di enter-or-

$$
\begin{aligned}
& \sigma^{\prime \prime}=\sigma\left[2 \sigma(x)+1 / x, K \sigma(y)^{2} / y\right] \\
& \frac{\left.\sigma(x) \neq w \sigma^{\prime \prime}=\sigma[2 \sigma(x)+1 / x\rangle K \cdot \sigma(y)^{2} / y\right]\left\langle w_{n}, \sigma^{\prime \prime}\right\rangle \rightarrow \sigma^{\prime}}{\left\langle w_{n}, \sigma\right\rangle \rightarrow \sigma^{\prime}}
\end{aligned}
$$

Cambia sol

$$
\begin{array}{ll}
\mathbb{C}^{\prime}(y)=k \sigma(y)^{2} & \sigma^{\prime \prime}(x)=2 \nabla(x)+1 \\
\sigma(y)^{2}=\left(k^{\nabla(x)}\right)^{2} & k \sigma(y)^{2}=k^{2 \sigma(x)+1}
\end{array}
$$

$$
\sigma^{\prime \prime}(g)=k^{\sigma^{\prime \prime}(x)} \quad \text { quindi } \sigma^{\prime}=\sigma^{\prime \prime}\left[u / x \alpha^{w / g}\right]
$$

dall"ipotex induti'i'?

Esercioर०2

Le propricto:
Rfletsva $\forall \Psi . I \subseteq I$
Aulitimecuetwic $\forall I, J 0 I \leq J, J \subseteq I \Rightarrow I=J$
Trautitiva $\quad \forall I, J, K . I \subseteq J, J \subseteq K \Rightarrow I \subseteq K$
de valgono per $I, J, k \in P(\omega)$, valplo aude per I,,$x \in P(\omega) \backslash S$, eseudo I, I eR quachfical univerfatmecte.
Poniaus $\bar{S}=[1, \omega]$. Atare $p(w) \backslash S$ wa le ми uive, Atew do vith isingletow $\left.T_{2} 0\right\},\{1\}\{2\}$, mivimati ma now miviki,
Inotrula calene

$$
\{0\} \subseteq\{0,1\} \subseteq\{0,1,2\} \subseteq \ldots
$$

Wow ha nessue map ro raceto e quindi uortal livite.
गinosindum chese \bar{S} couti eve blo matievi ficiti allore $(P(\omega) / 5, s)$ दccupleds.
Lia $I_{0} \subseteq I_{1} \subseteq I_{2} \leqslant m$ una caterne. Se UI iш $P(w)$ é un iv ineure finito, athor $\left\{I_{i}\right\}$ e unce areba fivite e puindi ha limite aude iu $P(\omega) / 5$. Invece se $\{T \quad\} \bar{e}$ ua atuna wifuls, allorv UIV e un infieve unfivito, e puind estevin P(w)/s per caltro20ue.

Eserajaro 3

Semantius denolazonete moditicala
[if tollaw tsete $t r] P=$ Condd (ITODP, Trip, ITIIP)
Condd: $N_{\perp} \times D_{\perp} \times D_{1} \rightarrow D_{1}$
$\operatorname{Coudd}\left(t_{0}, z_{A}, t_{2}\right)=I_{D_{1}}$ se $q_{0}=I_{M_{1}} \quad Q_{1}=I_{D_{1}} 0 t_{2}=1_{D_{1}}$
bestade un clechaulo z_{1} se $z_{0}=\left[01\right.$ e $z_{2} \neq I_{D_{1}}$小a , evale i $\quad z_{2}$ se $z_{0}=|n|$, $n \neq 0$; e $z_{1} \neq 1_{i_{1}}$
Coudd é couhumo essecilo contivew se gou wrpuluenti:
$\operatorname{Cond}\left(I_{11}, t_{1}, t_{2}\right)=I_{1}$
$\left.\operatorname{coun}(\operatorname{lo}), \tau_{1}, 1_{D_{1}}\right)=1_{D_{1}}$
$\left.\operatorname{cond}(-0],-\frac{7}{1},\left[y_{2}\right\rfloor\right)=7_{1}$
Cond $\left([n], I_{1}, y_{2}\right)=I_{1}$
$\operatorname{cond}\left([u],\left[y_{1}\right], f_{1}\right)=7_{2}$

grid funconse è wna o (anti oppunc l'identíc

Essende $[t 0]\}=[0]$ e $\left[c_{2} \ \neq 1\left(V_{2}\right)_{\perp}\right.$ absiacero

$$
\operatorname{Cowdd}([0], \pi+1] \rho,\left\lfloor y_{2} d\right)=[[+1] p=[[1] p
$$

stere prova per la 2^{a} repete
$($ fact 0$) \rightarrow c$ f fuct $\rightarrow d x, t \quad[1 / x] \rightarrow c \leftarrow$
ff x hen delte $x \times(\operatorname{fact} x-1))[0 / x] \rightarrow c \leftarrow$

$$
\begin{aligned}
& 0 \rightarrow 0 \quad 1 \rightarrow c \quad 0 \times(f \text { fact }-1)-c^{1} c_{1}^{c=1} \quad 0 \times f(f a t-1) \rightarrow c \\
& c=c_{1} \times c_{2} \\
& \left.\leftarrow \quad 0 \rightarrow c_{1} \text { fect }-1\right) \rightarrow c_{2} \leqslant c_{1}=0 \\
& <(f-1) \rightarrow c_{2} \leftarrow
\end{aligned}
$$

nacié prova: (fect o) hen le forme akouice

$$
\begin{aligned}
& P(t \rightarrow c) \stackrel{\operatorname{lof}}{=}[t]=\pi c] p \quad t: \tau \\
& \frac{t_{0} \rightarrow 0 t_{1} \rightarrow C_{1} F_{2} \rightarrow C_{2}}{\text { if to Hectrelte } \frac{t}{2} \rightarrow C_{1}} \\
& P\left(t_{0} \rightarrow 0\right) \stackrel{\operatorname{def}}{=}\left[t_{0}\right] \rho=[0] \quad \quad P\left(t_{2} \rightarrow C_{2}\right) \quad d f[t+2] \rho_{-}\left[c_{2} \| \rho\right. \\
& P\left(t_{1} \rightarrow t_{1}\right)=\left[t_{1}=\left[c_{1}\right] p\right. \\
& P\left(d t_{0} \text { Weut et } t_{2} \rightarrow c_{1}\right)=\pi f t_{-}+\omega t_{1}+t_{k} t_{2} \| P=?
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{L e c t} 0 \| p=\text { let } \varphi+\text { dfact } \rho \rho \cdot \varphi 101 \\
& \left.[f f e c t]=f \mid x त d \cdot d d^{\prime}, \operatorname{Condd}\left(d, L 11, d^{-}-1 \text { let } \psi<d \cdot| | d_{-1}^{1}-11\right)\right] \\
& \left.d_{0}=1-H_{1} \rightarrow N_{L}\right]_{1} \\
& d_{1}=\left\lfloor\lambda d^{\prime} \cdot \operatorname{condd}\left(d^{\prime},\lfloor 1\rfloor, 1_{N_{L}}\right)\right]=\left[1_{\left[L-N_{1}\right]}\right] \text { arpoluecd }
\end{aligned}
$$

$$
\begin{aligned}
& =\left\lfloor\text { nd } \operatorname{Cowdd}\left(d^{\prime},[1\rfloor, \pm N_{1}\right)\right]=\left\lfloor \pm\left[N_{1} \rightarrow N_{1}\right]\right] \\
& {[f a c t 0] \rho=\left(d d_{1}^{\prime} L_{\left[W_{1} \rightarrow M_{1}\right]}\right)^{0}=I_{N_{1}}^{C D D_{1}}}
\end{aligned}
$$

Execise 4

$$
\begin{aligned}
& \ln (x)=q \operatorname{s}\left(\omega^{2}\right)=\phi \\
& f_{n}(\operatorname{rec} x \cdot p)=f_{n}(\tau, p)=f_{n}(P) \\
& f_{n}(p+q)=f_{u}(p(q) \\
& f_{n}(\mu, P)=f_{w}(\bar{\alpha}, P)=[\alpha] \operatorname{lf}_{\omega}(P) \\
& \left.=\ln _{(p)}\right) \cup f_{u}(q) \\
& f_{w}(p \mid W)=f n(p)-\{d] \\
& \operatorname{fn}_{n}(+[\phi])=\phi\left(\rho_{n}(p)\right)=\{\phi(\alpha) \mid \alpha \in f \omega(p)\} \\
& P(p \xrightarrow{\mu} q) \stackrel{d p}{\sim} f(p) \supseteq f_{w}(\theta)
\end{aligned}
$$

- up $\xrightarrow{\mu} P$ obvious, $\rho u(\mu \cdot p)=\rho \omega(l) \cup$.
- $\frac{p \xrightarrow{\mu} q}{p \^{\alpha} \xrightarrow{\mu} q \chi^{\alpha}}$ obvious, $f^{\mu}(p) \supseteq f_{u}(q)$ imphis

$$
f_{n}(p)-\alpha \supseteq \rho_{w}(q)-\alpha
$$

- $\frac{p \xrightarrow{\mu} q}{[\phi] \phi(\mu)} q[\phi]$ obrious $f_{n}(p) \geq f_{n}(q)$ implies $\phi\left(f_{n}(p)\right) \supseteq \phi\left(f_{n}(a)\right), \phi$ injective

- $\frac{p \rightarrow q}{p_{r}^{M} \rightarrow q \mid r}$ obrious $f_{n}(p) \geq f_{n}(q)$ implied and
- $\frac{p_{1} \rightarrow q_{1} p_{2}{ }^{\lambda} \rightarrow q_{2}}{\left.p_{1} p_{2} \xrightarrow{\tau} q_{1}\right|_{q_{2}}} \quad \begin{array}{ll}\ln _{n}\left(p_{1}\right) \operatorname{linn}_{n}\left(q_{1}\right) & f_{n}\left(p_{2}\right)=f_{n}\left(q_{2}\right)\end{array}$
$-\frac{p[\operatorname{cec} x, p / x]^{\mu} \rightarrow q}{\operatorname{rec} x, p \rightarrow q}$
nolice that of $(p[x+x . p / x])=$

$$
f_{n}(p) \cup f_{u}\left(r(c x, p)=f_{n}(p)\right.
$$

An example: $\quad \dot{w} \xrightarrow{\alpha}$ vil

$$
f_{u}(\alpha, u t)=\{\phi\} \supset f_{u}(u l)=\phi
$$

The π-calculus:

$$
\begin{aligned}
& (x) \bar{y} x, \bar{x} y, u_{l} \xrightarrow{y}(z), \bar{z} y, u l \\
& \left.f_{n}(x) \bar{y} x, \bar{x} y, m l\right)=\{y\} \\
& f_{n}(\bar{z} y, w l)=\{y, z\}
\end{aligned}
$$

Exerafe 5

Case p is chosen:

$$
\begin{aligned}
& x_{1}=0.8 x_{1}+0.6 x_{3} \quad x_{1}+x_{3}=1 \\
& x_{3}=0.2 x_{1}+0.4 x_{3} \\
& 0.2 x_{1}=0.6 x_{3} \quad x_{1}=3 x_{3} \\
& x_{1}=0.75 \quad x_{3}=0.25 \\
& c_{3}=1.25 \quad g_{3}=2.5 \quad x_{1} H=1.25
\end{aligned}
$$

Case m ischojeu

$$
\begin{aligned}
& x_{1}=0.6 x_{3} \\
& x_{2}=x_{1}+05 x_{2} \\
& x_{3}=0.5 x_{2}+04 x_{3} \\
& 0_{1} 6 x_{3}=0,5 x_{2}+x_{2}=1 \\
& 06 x_{2}+1.2 x_{3}+x_{3}=1.2 x_{3} \\
& x_{2}=\frac{12}{28}=\frac{2}{7} \quad x_{3}=10 / 28 \\
& c_{3}=\frac{96}{2.8}=\frac{6}{28} \\
& \frac{9}{8}=\frac{100}{38} \quad c_{2}=\frac{24}{28} \quad d_{1}=\frac{26}{28}
\end{aligned}
$$

