Models of Computation

Midterm Exam on April 03, 2012

Exercise 1 (11)

Fibonacci numbers $F(n), n \in \omega$, are defined as follows:

$$
F(0)=0, \quad F(1)=1, \quad F(n+2)=F(n)+F(n+1), n \geq 0 .
$$

Given the command:

$$
w=\text { while } z \neq n \text { do } v:=y ; y:=x+y ; x:=v ; z:=z+1 .
$$

prove by computational induction on its denotational semantics that if $\mathcal{C} \llbracket w \rrbracket \sigma=\sigma^{\prime}$ then

$$
\begin{gathered}
\sigma(x)=F(\sigma(z)), \sigma(y)=F(\sigma(z)+1) \\
\text { implies } \sigma^{\prime}(x)=F(n), \sigma^{\prime}(y)=F(n+1)
\end{gathered}
$$

Finally notice that, if $\mathcal{C} \llbracket w \rrbracket \sigma=\sigma^{\prime}$, then $\sigma(x)=0, \sigma(y)=1, \sigma(z)=0$ implies $\sigma^{\prime}(x)=F(n)$.

Exercise 2 (11)

Consider the inference system R corresponding to the rules of the grammar (with $V=\{a, b\}$):

$$
S::=a S a|b S b| a a \mid b b
$$

where the well formed formulas are of the form $\alpha \in L$, with the meaning that string α belongs to the language generated by the grammar. Write down explicitly the rules in R.

Prove by rule induction - in one direction - and by mathematical induction on the length of the strings - in the other direction - that the strings generated by S are all the nonempty palindromes of even length. These palindromes are recursively defined as:
$\alpha \operatorname{rev}(\alpha) \quad$ where $\quad \operatorname{rev}(x)=x$ and $\operatorname{rev}(x \alpha)=\operatorname{rev}(\alpha) x$ with $x \in V \alpha \in V^{*},|\alpha|=1,2, \ldots$
Finally prove by induction on derivations that $P(d /(x \in L)) \stackrel{\text { def }}{=}|x|=2|d|$, i.e. the lenght of a string $\in L$ is twice the length of its derivation.

Exercise 3 (8)

Consider the following recursive definition :

$$
s q 1(n)=\text { if } n=0 \text { then } 1 \text { else } s q 1(n-1)+2 \times n+1
$$

Write a term $s q 1$ in HOFL with corresponds to this recursive definition and find its type.
Then, using symbolic goal reduction, prove by mathematical induction on $k, k \geq 0$, that $P(k) \stackrel{\text { def }}{=} t \rightarrow k$ implies $(s q 1 t) \rightarrow(k+1)^{2}$.

Midterm Exam-Hpno $3,201 \geq$

Exercise 1

Radmude?

$$
\varphi_{0}=e_{2}=
$$

 Hat Q holds.

$$
P \varphi \Rightarrow P(P \varphi) .
$$

$$
\left[\begin{array}{l}
\operatorname{Case} \sigma z=n \\
\sigma=\sigma^{\prime} \quad Q=\sigma x=F(n), \sigma y=F(n+1) \Rightarrow \sigma x=F(n) \sigma(y)=F(n+1) \\
Q E D!
\end{array}\right.
$$

Case $\nabla z \neq n \quad \varphi \sigma^{\prime \prime}=r^{\prime} \quad P(\varphi)$ implics:

$$
\begin{aligned}
& \text { (ase } \sigma z \neq n \mid \varphi=\Gamma \quad P(\varphi) \text { implics } \\
& \sigma y=F(\sigma z+1) \quad \sigma x+r y=F(\sigma z+2) \Rightarrow q^{\prime} x=F(n), \sigma(y)=F(n+1)
\end{aligned}
$$

Let usarsume the provecisof Q :

$$
v x=F(\nabla z) \quad \nabla y=F(F z+1)
$$

$$
\begin{aligned}
& f[w]=f x \mid
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\sigma x-F+I(y) \sigma(n+1))}{Q}
\end{aligned}
$$

We have 10 prove?

$$
\begin{aligned}
& F x=F(m)^{-q}(y)=F(n+1) \\
& \text { But } \overline{\sigma x+\pi y=F(G z)+F(\sigma z+1)=F(\sqrt{2}+1)!}
\end{aligned}
$$

Thus the premise of the inductive hypotheses holds. But Fe couclusipu of ito inductive is whet we lava 18 provide

Qed
Letting $t_{x}=0, \sigma_{y=1} \sigma_{z}=0$ satifices te promise If whet we just proved: $\sigma_{x}=F(0) \quad \sigma y=F(1)$.
this $\sigma^{\prime} x=F(\omega)$.

Exeraise 2

$$
\frac{d \epsilon L}{a \lambda a \epsilon L} \frac{d \epsilon L}{b x b \epsilon L} a a \epsilon L \quad b t \in L
$$

pute induction

$$
\begin{aligned}
& p(\alpha \in L) \alpha \| \\
& p(a a \in L) \stackrel{\beta \operatorname{rev} \beta}{=} \quad a a \stackrel{?}{=} \operatorname{\beta rev}(\beta) \\
& a=\beta \quad a=\operatorname{rev}(\beta)=\operatorname{rev}(a) \quad \text { cul }
\end{aligned}
$$

ESdem for bsel

$$
p(\bar{a} a \in L) \operatorname{dg} a s a^{\prime}=\operatorname{pra}(\beta)
$$

Butwe know Het

$$
\begin{aligned}
& p(S \in L) \neq s=\beta^{\prime} \operatorname{rev}\left(\beta^{\prime}\right) \\
& \text { We let } \beta=a \beta \text {. Thus } \\
& \beta^{\prime} \operatorname{rev}(\beta)=a \beta^{\prime} \operatorname{rev}\left(a \beta^{\prime}\right)=a p^{\prime} \operatorname{rev}\left(\beta^{\prime}\right) a=a s \varepsilon \operatorname{OQU}
\end{aligned}
$$

Mathematical indudrow
Dus shruge of leufthe $(2 n+1)$

$$
P(n) \stackrel{\infty}{=} \alpha \operatorname{rev}(\alpha) \in L \quad|\alpha|=n+1
$$

$P(0)=\operatorname{arcv}(a)=a a \in L$, QED similenty for $b b$ Let us alswece P(w). We have lo provel $P(n+1)=\beta \operatorname{rov}(\beta)^{2} \in L \quad$ Porall is wita $(\beta)=n+2$
Vhe can have buely $\beta=a \alpha$ ior $\beta=b \alpha$
Whitt $\beta=a \alpha$ we have $a d \operatorname{rer}(a \alpha)=a \operatorname{drev}(\alpha) a$ witt $|\operatorname{lvev}(\lambda)|=n+1$. Thus α rerdel and we

Iuduction on denvalions

$$
P\left(d / a c^{6}\right) \stackrel{d f}{=}\left|p^{2}\right|=2|a|
$$

Arious: $d=1$

$$
\begin{aligned}
& P(\tan C L) \stackrel{\operatorname{det}}{=}(a a)=2 \quad Q R D \\
& P(\phi / b b)^{d x} \mid b 5 /=2 \quad a E 1
\end{aligned}
$$

Iupereace rutes

$$
P((d / d \in L) / a \alpha a \in L) \stackrel{d \rho f}{=}|a k a|=2 \text { (d/dGL)/ada<L|}
$$

Bur we arsume $|t|=2 \mid(d / \alpha \in L)$
We hare $\mid(/ L \in L|a| a c L|=|(\alpha / \alpha \in C \mid+1$

$$
|\varepsilon \alpha a|=|\alpha|+2
$$

Thas $|\alpha|+C=2|d| \alpha \in U \mid+2=2(|d| \alpha \in L \mid+1)$

$$
=2(a / \alpha \in L)(a+a \in L)
$$

Simitarly for re dter rule

Exerate 3

$$
u t \rightarrow \operatorname{inc} l
$$

Mattemalicef iuduction

$$
P(k) \stackrel{d}{=} t \rightarrow K \text { imptres }(0,1 \theta) \rightarrow(k+1)^{2}
$$

$(s q 1 t) \rightarrow C \leq \quad$ we asvuce $\overparen{t} \rightarrow \mathrm{~K}$
$* \frac{t}{*}+H_{\text {ew }} /$ ele $(\operatorname{sp1}(\hbar-1))+2 \times k+1 \rightarrow C$
Case $k=0 \quad 1 \rightarrow c<\varepsilon^{c=1} \quad 1=11^{2} \quad 900$.

$$
\left.\left.\begin{array}{l}
\text { case } k \neq 0 \\
c=c+2 k+1 \\
f
\end{array}(\operatorname{son}(t-1)) \rightarrow c \right\rvert\,(t-1)\right)+2 \times 6+1 \rightarrow c \leftarrow
$$

Assunce te inductive hy yottedis
$t^{\prime} \rightarrow K-1$ ituplies $\left.(s q)^{+}\right) \rightarrow K^{2}$
But we have $t-1 \rightarrow c$ " $\frac{C^{\prime \prime}}{=k-1} t \rightarrow K \leftarrow \square$
Thas we cane conctude $\left(\frac{591}{}(t-1)\right) \rightarrow K^{2}$
Thus $c=k^{2}+2 k+1=(k+1)^{2} \quad$ Q \bar{l}

