Models of Computation

Written Exam on June 6, 2012

(First part: Exercises 1 and 2
Second part: Exercises 3 and 4)

Exercise 1 (8)

We modify the definition of memory σ in IMP as a partial function from locations to integers. The update function [[] : $\Sigma \times \Sigma \rightarrow \Sigma$ is computed as follows: $\sigma\left[\sigma^{\prime}\right](x)=$ if $\sigma^{\prime}(x)$ is defined, then $\sigma^{\prime}(x)$, else if $\sigma(x)$ is defined then $\sigma(x)$, else undefined.

The syntax of IMP is modified as follows. A new syntactic category Mass of multiple assigments, with notation m, is introduced, with two constructs, ordinary (single) assignment $x:=a$ and multiple assignment composition $m \mid m$. Then multiple assigments are commands: $c::=\{m\} \mid \ldots$, while single assignments are not directly commands anymore. The denotational semantics is as follows:

$$
\mathcal{M} \llbracket x:=a \rrbracket \sigma=(\mathcal{A} \llbracket a \rrbracket \sigma / x) \quad \mathcal{M} \llbracket m_{1} \mid m_{2} \rrbracket \sigma=\left(\mathcal{M} \llbracket m_{1} \rrbracket \sigma\right)\left[\mathcal{M} \llbracket m_{2} \rrbracket \sigma\right] \quad \mathcal{C} \llbracket\{m\} \rrbracket \sigma=\sigma[\mathcal{M} \llbracket m \rrbracket \sigma]
$$

where (n / x) is a memory with $(n / x)(x)=n$ and undefined elsewhere.
Prove that: (i) multiple assignment composition is associative, namely

$$
\mathcal{M} \llbracket\left(m_{1} \mid m_{2}\right)\left|m_{3} \rrbracket \sigma=\mathcal{M} \llbracket m_{1}\right|\left(m_{2} \mid m_{3}\right) \rrbracket \sigma ;
$$

(ii) the denotational semantics of a single assignment $x:=a$ in the ordinary version of IMP coincides with $\mathcal{C} \llbracket\{x:=a\} \rrbracket$; (iii) $\mathcal{C} \llbracket\{x:=1\} ;\{x:=2 \mid y:=x\} \rrbracket \sigma \neq \mathcal{C} \llbracket\{x:=1\} ;\{x:=2\} ;\{y:=x\} \rrbracket \sigma$. Finally, (iv) give the operational semantics of the new constructs and (v) prove their equivalence with the denotational semantics.

Exercise 2 (8)

We consider strings $\alpha, \beta \in V^{*}$ with $V=\{1,2, \ldots, b\}$, which are intended to represent natural numbers in base b with digits without zeroes. A relation $<$ is defined on them:

$$
\frac{|\alpha|<|\beta|}{\alpha<\beta} \quad \frac{|\alpha|=|\beta| \wedge n<m}{n \alpha<m \beta} \quad \frac{|\alpha|=|\beta| \wedge \alpha<\beta}{n \alpha<n \beta}
$$

Prove that: (i) $<$ is a transitive, well founded relation on V^{*}; (ii) $\leq=<\cup\{(n, n)\}$ is a non complete partial ordering with bottom; and (iii) it is a total ordering. Then, (iv) show that total ordering $\left(V^{*},<\right)$ is isomorphic to $(\omega,<)$ via monotone function $\llbracket-\rrbracket$ defined as $\llbracket \lambda \rrbracket=0$ and $\llbracket n \alpha \rrbracket=n+b \llbracket \alpha \rrbracket$ (where λ is the string of lenght zero), namely $\llbracket \rrbracket$ is bijective and $\alpha<\beta \rightarrow \llbracket \alpha \rrbracket<\llbracket \beta \rrbracket$.

Exercise 3 (8)

Consider the HOFL program:

$$
t=r e c f . \lambda n \text {.if } n \text { then } 0 \text { else if } n-1 \text { then } 1 \text { else } 2 \times(f n-1)-(f n-2),
$$

Compute the corresponding $\Gamma:\left[N_{\perp} \rightarrow N_{\perp}\right]_{\perp} \rightarrow\left[N_{\perp} \rightarrow N_{\perp}\right]_{\perp}$ and prove that $\left\lfloor f^{*}\right\rfloor:\left[N_{\perp} \rightarrow N_{\perp}\right]_{\perp}$ - where $f(n)=\lfloor n\rfloor$ - is a fixpoint of Γ. Observing that t is in fact a definition by well-founded recursion, conclude that $\left\lfloor f^{*}\right\rfloor$ is the unique fixpoint.

Exercise 4 (6)

Determine the processes reachable from $p=((\operatorname{rec} x . \alpha x) \mid(\operatorname{rec} x .(\bar{\alpha} . x \mid \beta . n i l))) \backslash \alpha$ and from $q=$ rec $x . \beta x$ and prove that p e q are not strong bisimilar, but that they are weak bisimilar. For simplicity, assume the structural axioms $p|q=q| p,(p \mid q)|r=p|(q \mid r)$ e $p \mid n i l=p$.

Writhen Exan ou Tue 6, 2012

定xercife 1
(u) $0 7 1 0 [4 m _ { 1 } m _ { 2 }) \longdiv { m _ { 2 } } \quad \sigma = (\sigma _ { 1 } [\sigma _ { 2 }]) \sigma _ { 3 } = c$

 occuming more tan olue the resaling a Hinamen: - He oue iu the memory unt highest index:
(it)

$$
\begin{aligned}
& \text { bi }[\{x=a\}] \sigma=G 9 / 16[x=a] \sigma=G[(a[a] 50)]
\end{aligned}
$$

(vii)

$$
\begin{aligned}
& \left.=0[y / x][2 / 2,7 / y]=\sigma^{-2} / 2 / 1 / 7\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.\sigma^{\prime \prime}=\operatorname{Ti}^{1}[2 / 2]\right] \quad \sigma t[\pi / \pi] \\
& =\sigma\left[\frac{2}{2} / x\right]\left[\frac{2}{2} / y\right]
\end{aligned}
$$

$$
\begin{aligned}
& (1 \sigma) \frac{\langle a, \sigma\rangle \rightarrow n}{\langle x=a, \sigma\rangle \rightarrow(/ / \alpha)} \\
& \frac{\left\langle m_{1}, \sigma\right\rangle \rightarrow \bar{v}_{1}\left\langle m_{2}, \sigma\right\rangle \rightarrow \sigma_{2}}{\left\langle m_{1} / m_{2}, F\right\rangle+\rightarrow \sigma_{1}\left[\sigma_{2}\right]} \\
& x m \quad D+E D \\
& 2 m=\sigma\rangle \rightarrow \sigma[\sigma]
\end{aligned}
$$

Goratinnet \rightarrow Da rationel

$$
\begin{aligned}
& 6+7+1+n \leq 9 / a \rho=k \\
& 016 \pi=2=(n)
\end{aligned}
$$

Denotahisnet \rightarrow Oporational

$$
\begin{aligned}
& \left.(a|a| \sigma / x)=\sigma^{\prime} \quad र a, y\right) \rightarrow n \quad(p / x)=\frac{1}{4}
\end{aligned}
$$

$$
\begin{aligned}
& P(q m\})=g[m\} \bar{L} \sigma=\sigma \quad \rightarrow\langle, m\}, \sigma\rangle \rightarrow \sigma
\end{aligned}
$$

Exersive 2

If $D V=1 \beta_{1}=7 \ell=K$ we adsure trackhing halds
If $\left|a_{1}\right|=\mid a_{2}\left(\left|=\left|a_{3}\right|=k+1\right.\right.$ and $a_{1}<a_{2}$ or $a_{2}<a_{3}$
Wen trand divily holds
 for te matil Mardinet haporters
I is welefounded tis acyctic. fince it is trasiove Bif enouguto notice $\alpha<\alpha$ cquot be proued, no rute aytyen
 $a+m_{0} f \sum_{n=0}^{k} h^{k}$
14. we atready groved rausilinity aud autirgmmetry

 $1<11<111 \mathrm{~m}$ is achén mitit no bats.
$(16) \leq$ is atbtal ordening. For t is acly Hreeporeting lane postibe: citter $\alpha=\beta$
 - by applyitay the ingerecuce rues Stubolicely 12 agoal oniacted way. Oulin oue of Hew applis
$(15) \quad[[\sqrt{2}]=0 \quad[n \alpha]=n+b[d x]$
This function cube inverted. The second couetion correspond to take le quotient (1)II of $[\mid r d]$ aud b, with a remainder $1 \leqslant r \leqslant b$ instead of $0 \leqslant r<t$ as usual $[\|n\|]=m$
Examining any of the above two factions, ace observes monotonicity, e.g. quotinut eremaikader are monotone functions

Exeráte 3

$$
\begin{aligned}
& \pi+I \rho=\operatorname{fix} \Gamma++\operatorname{tint} \rightarrow \operatorname{mi}= \\
& \Gamma=d f \cdot L^{2} d, \operatorname{Cond}(d, t \cdot f, \operatorname{Cond}(d=1), L 1) \\
& 21 \times\left(\operatorname{let} \varphi \leftarrow f \cdot \varphi(d=11)-L L^{*}\right] \\
& (R-f \& p \cdot Y(d=1(2 j))) \quad \quad \quad f(n)=L^{n}
\end{aligned}
$$

Phn $(\ln 1)=$

$$
\begin{aligned}
& \operatorname{Lad} \operatorname{Cond}(d \operatorname{LD}, \operatorname{Cond}(d=1 L 1) L 1)), \\
& \left.22 x_{1}(d=1(1))=1(d=121)\right)
\end{aligned}
$$

But Kisis just LfI:

$$
\begin{aligned}
& \operatorname{let} \mathrm{f}_{1}+\left[f^{*} J \cdot f_{M_{1}}=\frac{1}{A_{1}} \quad \text { ok bu } 1\right. \\
& \left.R e t \varphi<L f^{H}\right] \cdot \varphi(0)=(0] \quad \text { eqtow } 0 \\
& \left.\operatorname{ect} \varphi<f^{7}\right] \cdot \varphi[n]=t^{2}\left[\frac{x_{1}}{-}\left(4^{n}=1 L^{1}\right]-\left(4^{n}-(2\rfloor\right)\right. \\
& =2(n-1)-(n-2)]=c^{n} 1
\end{aligned}
$$

Definitou by mattemainol recertow:

$$
f(0)=0 \quad f(1)=1 \quad f(n+2)=2 f(n+1)-f(m)
$$

It Devived for ahln.

Exerase 4

$$
\operatorname{rec} x, \alpha x=p \quad \quad \operatorname{rec} x, \alpha_{x} \mid \beta \omega C=p^{\prime \prime}
$$

$\frac{\sin |\beta \mathrm{Bl}| \ldots \mid \text { हnt }}{\text { nvole }}=r_{n}$

$$
\begin{aligned}
& \left(p^{\prime} / p^{\prime \prime} / r_{n}^{\beta} \alpha \underset{\beta^{\beta}}{\beta}\left(p^{1} / \alpha^{\beta} p^{\beta} / r_{2}\right)<x\right. \\
& P_{n}=\left(r^{\prime} / p^{n} / r_{n}\right) X \quad \quad \bar{P}_{n}=\left(p^{1} / \bar{W} p^{n} / r_{n}\right) \quad n=0,1 m \\
& P_{n} \xrightarrow{Q} \bar{P}_{n} \bar{P}_{n} \xrightarrow{\bar{\tau}} P_{n} \\
& p=P_{0} \\
& P_{n} \xrightarrow{r} P_{n}+1 \\
& P_{n+1} \xrightarrow{\mapsto} P_{n} \bar{P}_{n+1} \xrightarrow{\beta} \bar{P}_{n} \\
& q_{9}^{P} 9
\end{aligned}
$$

$p \neq q$ in fot $p \xrightarrow{\tau}\left(p^{\prime} / p^{u} / r_{1}\right)$ and $q \xrightarrow{t}$ $p \approx q$ hafer fromevery stater we have $\Rightarrow e B$

