Models of Computation

Written Exam on July 11, 2012

(First part: Exercises 1 and 2
Second part: Exercises 3 and 4)

Exercise 1 (7 punti)

Extend IMP with the arithmetic expression $\operatorname{sqrt}(a)$ for the square root, defined by the following rule:

$$
\frac{\langle a, \sigma\rangle \rightarrow n \times n}{\langle\operatorname{sqrt}(a), \sigma\rangle \rightarrow n} .
$$

Determinism of operational semantics (namely $\langle c, \sigma\rangle \rightarrow \sigma^{\prime}$ and $\langle c, \sigma\rangle \rightarrow \sigma^{\prime \prime}$ implies $\sigma^{\prime}=\sigma^{\prime \prime}$) still holds? If not, exhibit a counterexample. Now add to the premise of the above rule the condition $n \geq 0$. Modify the denotational semantics of IMP arithmetic expressions to take into account expressions with no value. Finally, give the denotational semantics of the new construct and prove the equivalence of its operational and denotational semantics.

Exercise 2 (8)

Decreasing functions $f: \omega \rightarrow \omega \cup \infty(n<m \Rightarrow f(n) \geq f(m))$ are ordered pointwise as usual $(f \sqsubseteq g \Leftrightarrow \forall x . f(x) \leq g(x))$. Assume also that $f \sqsubset g$ iff $f \sqsubseteq g$ but not $f=g$. Prove that \sqsubset is a well founded relation (even starting from $\forall n \cdot f_{\infty}(n)=\infty$ there are no infinite descending chains!), and that \sqsubseteq is a complete partial ordering with bottom.
(Hint: for wellfoundedness, partition functions into classes: $C_{\infty}=\left\{f_{\infty}\right\}$; and $C_{h, k}$, for all $h, k \in \omega$. Class $C_{h, k}$ contains all functions f with: (i) $f(n)=\infty$ if $0 \leq n<h$ and $f(n) \neq \infty$ if $h \leq n$; and (ii) $\exists m . k<f(n)$ if $n<m$ and $f(n)=k$ if $m \leq n$. Show that this is actually a partition. Show also that for every f in a class, there are none or finitely many g in the same class with $g \sqsubset f$. Also if $g \sqsubset f$ and $g \in C_{h^{\prime}, k^{\prime}} \neq C_{h, k}$, then $h^{\prime} \leq h$ and $k^{\prime} \leq k$, but of course with either $h^{\prime}<h$ or $k^{\prime}<k$ or both. Conclude the proof.)

Exercise 3 (7)

Given the μ-calculus formula $\Phi=\nu x .(p \vee \square x) \wedge(q \vee \diamond x)$ write its denotational semantics $\llbracket \Phi \rrbracket \rho$ and evaluate it on the LTS below

Exercise 4 (8)

A philosopher has three states: either a: (s)he thinks; or b: (s)he keeps a fork; or c: (s)he keeps both forks and eats. A fork has two states: up and down. A philosopher and a fork syncronize with action get when the philosopher moves from a to b or from b to c and the fork from down to up, while action rel is used similarly for releasing the forks. Actions get and rel, for both philosophers and forks, have the same rate λ. The system consists of two philosophers and two forks. Define a PEPA program representing the system and derive the corresponding CTMC (with actions). To compute the correct rates, write down explicitly the proof for the transition where the process consisting of the two philosophers synchronizes (in four different ways) on get with the process consisting of the two forks. Finally, find the bisimilar states and draw the minimal CTMC.

Writien Exau ou July 11,2012
Exercise 1

- Detarminsw daes uot Lold, Here we have a counter excumplet

$$
\begin{aligned}
& \left.\left\langle x ;=\operatorname{sqnt}(4) \rightarrow 0<\frac{0[4 / 2]}{n=2}<\operatorname{sen} 4\right), \pi\right) \rightarrow n \\
& \text { - ai } A_{\exp } \rightarrow \bar{E} \rightarrow N_{L} \\
& K=I \\
& \beta: \operatorname{sexp} \rightarrow \frac{z}{2} \rightarrow T_{\perp}
\end{aligned}
$$

$$
\begin{aligned}
& \text { sert }(m)=\text { case } m \\
& n \times n: n \geqslant 0 \\
& \text { Getherwise: } 1 N_{1}
\end{aligned}
$$

- Dperanonal \rightarrow Denotetinonal

$$
\begin{aligned}
& \text { Kart(a), }+\rightarrow 4 \quad a \Pi a \mid=n \times n \\
& \text { anfsgi }(a)]_{5}^{5}=n \geqslant 0 \quad \operatorname{sot}(n \times n)=n
\end{aligned}
$$

- Denatativ ual \rightarrow Cperativnal

$$
\begin{align*}
& m=n \times n \quad n \geqslant 0\langle a, \pi\rangle \rightarrow n \times n\langle\operatorname{sor} t(a), \eta\rangle \rightarrow n
\end{align*}
$$

Exercite2
Gren $f \in C_{h}, k, \operatorname{lt} n \leqslant m \Rightarrow f(n) \times k$ and $n>m \Rightarrow f(u)=k$.
FUnclious $g \in C_{n \in}$ Uit $g E f$ aveithis constrained as follows: $n<h \Rightarrow g(n)=\infty \quad h \leq n<m \Rightarrow g(n) \leq f(n)$ and $n>m \Rightarrow g(n)=k$. Thus g cau tate n fivite sel of values for a fivite set of aggumenelir. Thus there is If $g \subseteq f$ but $g \in\left(n_{n^{\prime}} k^{\prime}\right.$, ther eitter of suchifuriction $g(h) \neq \infty$, and Has $a^{\prime} \leq h$, or He likit vatue is smatler, v.e $k^{\prime}<k$.
Thus any deschaing can stay for agmite muentser of steps in any $C_{h^{\prime}, \hbar}$ wir $h \leq h$ ant $K^{\prime}=K$, i.e. it must be ficuite.
starking with foo, ten $g \subset f_{\infty}$ must be infoke clats Chik, and te same proof applies.
Ordening E is complete, $\left(\prod_{i \sigma \omega} f_{i}\right)(n)=\frac{1}{i \in \omega} f_{i}(n)$
As for HOFL fruch ous, continuity is obvious: auy fuuction smatter then $\underset{i \in W}{ } f_{i}$ would not be the lub for seme argutieett.
Clearly $f(x)=0$ is tic bottome.
To provettal clatses Co dud Chis actuaidy partition decreasing fuichions, give a feuchoo f, it can have an iutial sefwecer, or all the arg viments, where it eraluates to This determiues if $f \in C_{\infty}$ or $f \in C_{h k}$ withsome h. Thew if $f \in f$ it cou decreese oily a finito nuwber oftine This deverminces k i- Cule.

Exercife?

$$
\begin{aligned}
& {[D x \cdot(p \vee \square x) \wedge(q \vee \sqrt{\wedge} x)] \rho=} \\
& =F X d s .\left(\rho p \cup\left\{v \mid \forall r^{\prime} v \rightarrow v^{\prime}, v^{\prime} \in s\right)\right. \\
& \text { n }\left(\rho q \cup\left\{v, \exists v v \rightarrow v^{\prime}, v^{\prime} \in s\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& S_{0}=\{1,2,3,4,5\} \\
& S_{1}=(\{2\} \cup\{1,2,3,4,5) \cap(\{5\} \cup\{1,3,4\})=\{1,34,5\} \\
& S_{2}=(\{2\} \cup\{4,5\}) \cap(\{5] \cup\{1,3,4\})=\{4,5\} \\
& S_{3}=(\{2\} \cup\{4,5\}) n(\{5\} \cup\{3,4\})=\{4,5\}=F i x
\end{aligned}
$$

Exercisey

$$
\begin{aligned}
& a=(\operatorname{get}-\lambda) \cdot b \\
& b=(\operatorname{get}, \lambda), a+(\text { rel }, \lambda) \cdot a \\
& a=(r e l, a), b \\
& \text { down }=\left(g_{a t} t, \lambda\right) \cdot u p \\
& u p=(r e d, d) \text { down } \\
& \text { systeme }=(a \not \approx a) \Delta 7 \text { getree (doww条doww) }
\end{aligned}
$$

$$
\begin{aligned}
& r_{g e t}(a a)=2 \lambda \quad \operatorname{rgct}(d d)=2 \lambda \\
& a a \xrightarrow{\operatorname{gect}_{t}} a b \quad d d \xrightarrow{\text { get }} d u \\
& \text { aadd of tatath }
\end{aligned}
$$

Bisimitanily

Ro: all equivatecul

$$
\begin{aligned}
& \{a c u n,(a \operatorname{u}\}\} \\
& R_{2}=R_{1}
\end{aligned}
$$

philasophers think

a phifolopher
eats

