Models of Computation

Endterm Exam on May 29, 2012

Exercise 1(7)

Given any monotone function $f: N_{\perp} \to N_{\perp}$, prove that $f \perp_{N\perp} = f(f \perp_{N\perp})$. Now, given the closed, well typed HOFL term $rec \ x.t: int$, prove that its denotational semantics is either $\perp_{N\perp}$ or $[t]\rho[d/x]$, independent of d.

Exercise 2 (8)

Prove in CCS by rule induction that $P(p \xrightarrow{\mu} q) \stackrel{def}{=} \Phi(p) \stackrel{\Phi(\mu)}{\to} \Phi(q)$ for every permutation Φ of free names (restricted names are bound and α -convertible, namely they are not free). Notice that, since permutations form a group, we also have that $\Phi(p) \stackrel{\Phi(\mu)}{\to} \Phi(q)$ implies $p \xrightarrow{\mu} q$. Finally, prove that $p[\Phi] \simeq \Phi(p)$, where $[\Phi]$ is a CCS construct, while $\Phi([-))$ is a permutation operation.

Exercise 3(7)

Prove that in the π -calculus $!p \stackrel{\bullet}{\sim}_L p |!p$. Consider then the alternative definition:

$$\frac{p \xrightarrow{\alpha} q}{ !'p \xrightarrow{\alpha} !'p \mid q}$$

and prove in detail that for $p = ((y)\overline{x}y.nil) + x(z).nil$ we have $!'p \not\sim_E p |!'p$.

Exercise 4 (8)

Define formally the notion of bisimulation/bisimilarity for simple Segala automata. Then apply the partition refinement algorithm to the automaton below to check which are the bisimilar states.

Endterm Exam - May 29, 2012 Exercise 1 Monotonicity of f: [NI->NI] is defined as $n \equiv y$ implies $f(n) \equiv y, f(y)$ Thus $f(1) = n \neq 1$ supplies the f(x) = nNow, if $f(\bot)=\bot$ there $f(F(\bot))=f(\bot)=\bot$ while f(t) = n, Here $\forall x. f(x) = n$, in particular f(n) = f(f(t)) = f(t) = n. Let us computer [recx. +] p= fix dd. [[+] p] da] do=_NI d1= [I+]p[7n] if d1=1 then we are done Otherweise it means thet function id. [[t]]p[d/k] which is monotone, is constant, namely (Id. IFR 0101/2]) do = (id. IIFR p[0/2]) d, = de, thus dy the fixpoint and it does not depend on d. As a check, notice the do Ed E. is a cherice in MI, and This it cannot be longer Han 2. -----

Exercise 2 = $P(\mu p \xrightarrow{\mu} p) \stackrel{def}{=} \phi(\mu p) \frac{\phi(\mu)}{\phi(p)} \phi(p)$ obvious being $\phi(\mu p) = \phi(\mu) \phi(p)$ $\begin{array}{c} p \xrightarrow{u}{\rightarrow} q \\ p \xrightarrow{u}{\rightarrow} q \xrightarrow{u}{\rightarrow} q \\ p \xrightarrow{u}{\rightarrow} q \xrightarrow$ P(p1x = g(x) = p(p1x) P(x) p(91x) (\$(p)) x \$\$(\$)(\$(q)) x \$ Notice that ϕ does not change λ , i.e. $\phi(\lambda) = \lambda$, since ϕ changes only free names. Thus u = 1, 2 rupties \$(m) = V, X. $\frac{P \stackrel{\mathcal{M}}{\rightarrow} q}{p(p+r \stackrel{\mathcal{M}}{\rightarrow} q)} \stackrel{\text{def}}{=} \frac{\phi(p+r) \stackrel{\Phi(a)}{\rightarrow} \phi(q)}{\phi(q)}$ P+r -> 9 $= \phi(p) + \phi(r) + \phi(q)$ obvious an unity He $\phi(p) \stackrel{\phi(q)}{\longrightarrow} \phi(q)$ hipo Heris $P \rightarrow q$ $P(P|r \rightarrow q|r) \stackrel{\text{def}}{=} \phi(P|r) \stackrel{\phi(m)}{=} \phi(q|r)$ PT5-39/1 $= \phi(p) \phi(r) \phi(m) \phi(q) \phi(r)$

(____) P1 -> 91 P2 -> 92 P1/P2 - 91/P2 $\phi(r_2) = \phi(q_2)$ p[rec x,p/x] ~ 9 rec x. p - gg $P(rec \times p \xrightarrow{\mu} q) \xrightarrow{\mu} vec \times \phi(p) \xrightarrow{\phi(q)} \phi(q)$ obvious assuming $\phi(P)[recx, \phi(P)/z] \phi(u) \phi(q)$ Notice that \$ is a permutation of names, thus it does not apply to a which is a process variable. p[\$]~b(P) cousider He rdetion $R = \{p[\phi], \phi(p)\} \neq a proce$ Risa bitimulation: $P[\phi] \stackrel{\phi(u)}{\to} q[\phi] \longleftarrow P \stackrel{\alpha}{\to} q \implies \phi(P) \stackrel{\phi(u)}{\to} p(q)$ for He previous lemma Vi'ceverse $\phi(p) \xrightarrow{\mu} q'$ implies $p \xrightarrow{\phi'(\mu')} \phi(q') \quad p[q] \xrightarrow{\mu} \phi(q')[\phi]$ But q R p (q') [q]. Infact, letting q=p(q') we have $\varphi(g) = \phi(\phi^{-1}(g')) \mathcal{R}(\phi^{-1}(g')) \mathcal{I}(\phi) = q \mathcal{I}(\phi).$

and a second Exercite 3 Let R= 2(!P, Pl!P) | Pa procent] be a relation the show that pisa bisimulation, $P \xrightarrow{2} P' \leftrightarrow P / P \xrightarrow{2} P'$ directly reduced i.e. all the transitions of ! pare also transitions of P! P. For p= ((y) xy, wil) + x(2) wit we have $P \xrightarrow{\overline{ze}(\underline{n})} ul \quad Ond \quad P \xrightarrow{\overline{ze}(\underline{z})} ul$ Instead: $P[!'P \rightarrow q \xleftarrow{p=(y)}{} uil (p) = uil (p)$ Thus ! p \$ white p! p = (3) ut / unt The difference is not about an input, this it is independent of NE or N.

Exercise 4 Simple Sogale autometa: $\chi: S \rightarrow \tilde{P}(L \times \tilde{D}(S))$ $(l,d)\in \lambda(5) \iff 5 \xrightarrow{l} d$ $R \text{ bisinuclation}; \quad s_1 \phi(R) = 5 \xrightarrow{P} d_1 = 5 \xrightarrow{P} d_2$ $R = \phi(R) \qquad \forall I_R \cdot d_1(I_R) = d_2(I_2) \text{ and vice verter}$ ~ bis mileritz = maximal bis mulation $d_1(s_2) = 1$ $5_1 \rightarrow d_1$ S A d $d_{1}'(S_{3}) = 1$ 5 -> oh $J_{2}(S_{2}) = \frac{2}{3}$ $\partial_{\mathcal{D}}(\varepsilon_n) = 1/3$ 5 - 03 $d_3(S_1) = 1/2$ $d_3(s_3) = 1/2$ Sy a dy dy (56)=1/2 $d_{4}(5_{5}) = \frac{1}{2}$ d5 (55)= 2/3 Ss & ds $d_{5}(5_{4}) = \frac{1}{3}$ 52-306 d6 (5++)=1/2 d6 (56) = 12 Ro=254,52,50,54,55,565 $R = \frac{1}{2} \frac{1}{5} \frac{1}{5}$ Q2= { {51,54} {52,55} 253,56} notice Het d2 {51,54} = 1/3, d3 (5,54) = 1/2 $P_3 = \{ \{ S_4 \} \{ S_2, S_5 \} \{ S_3, S_6 \} \} = d_1 \{ S_2, S_5 \} = 1 \ d_4 \{ S_2, S_5 \} = k_2$ $R_4 = [1s_1] [s_4] [s_2] [s_3] [s_3] [s_3] [s_6]] = 0$ · 03:5,]=1/2 06:5,]=0