Models of Computation

Midterm Exam on April 05, 2013

Exercise 1 (12)

Extend IMP with: (i) the new syntactic category S (with variables s) of expressions with side effects, shortly elat, having $\langle s, \sigma\rangle \rightarrow\left(\sigma^{\prime}, n\right)$ as well formed formulas for the operational semantics and semantic domain $\Sigma \rightarrow(\Sigma \times N)_{\perp}$; and (ii) the new productions

$$
s::=\{a\}|c ; s| s_{0}+s_{1} \quad c::=x:=s
$$

with the following informal semantics: given σ, for $s::=\{a\}$ the meaning is to return σ and the value produced by a; for $s::=c ; s, c$ is executed first and then s, returning the value of s; for $s::=s_{0}+s_{1}$, s_{0} is executed first, then s_{1}, and finally the sum of the two values is returned. For $c::=x:=s$, the meaning is first to evaluate s and then to execute the assignment, employing the memory modified by s as memory, and the value of s as value to assign to x.

The denotational semantics of the latter production is as follows:

$$
\begin{aligned}
\mathcal{C} \llbracket x:=s \rrbracket \sigma= & \text { case } \mathcal{S} \llbracket s \rrbracket \sigma \text { of : } \\
& \perp_{(\Sigma \times N)_{\perp}}: \perp_{\Sigma_{\perp}} \\
& \left(\sigma^{\prime}, n\right): \sigma^{\prime}[n / x] .
\end{aligned}
$$

Define the operational and the (remaining) denotational semantics of the new constructs and show the operational-denotational equivalence. Finally, prove if the following properties hold:

$$
\left(s_{0}+s_{1}\right)+s_{2} \equiv s_{0}+\left(s_{1}+s_{2}\right) \quad\left(c_{0} ; s_{0}\right)+\left(c_{1} ; s_{1}\right) \equiv\left(c_{0} ; c_{1}\right) ;\left(s_{0}+s_{1}\right)
$$

and, if not, give a counterexample.

Exercise 2 (9)

Consider the logic inference system R corresponding to the rules of the context-sensitive grammar:

$$
\begin{array}{lll}
\text { (i) } S::=\lambda & \text { (ii) } S::=a S b c & \text { (iii) } x c b y::=x b c y
\end{array}
$$

where the well formed formulas (wwf) are of the form $x \in L$, and where x is a string on $\{a, b, c\}$. Also λ is the empty string. In rule schema (iii), x and y stay for any string on $\{a, b, c\}$.

Write down explicitly the rules in R.
Prove by rule induction that if $z \in L$ is a theorem, then z is of the form $a^{n} w_{n}, n \in \omega$, where w_{n} contains no a 's, exactly $n b$'s and $n c$'s (formally $\left.w_{n}\right|_{a}=0,\left.w_{n}\right|_{b}=\left.w_{n}\right|_{c}=n$). Also, show that if rule (iii) does not apply to theorem $z \in L$, then z is of the form $a^{n} b^{n} c^{n}$. Conversely, prove by mathematical induction that for all $n, a^{n} b^{n} c^{n} \in L$ is a theorem.

Exercise 3 (9)

Find the type of the following HOFL program:

$$
I=\operatorname{rec} f . \lambda n \text {.if } n \text { then } 0 \text { else if } n-1 \text { then } 1 \text { else } 2 \times(f(n-2))-(f(n-1))+3 .
$$

Then, using symbolic goal reduction, prove by (strong!) mathematical induction on $k, k \geq 0$, that $P(k) \stackrel{\text { def }}{=} t \rightarrow k$ implies $(I t) \rightarrow k$.

Finally, observe that I is in fact a definition by well-founded recursion, and write explicitely function $F(b, h) \in C$, with $b \in B$ and $h:<^{-1}\{b\} \rightarrow C$ and the equation $I(b)=F\left(b, I \upharpoonright<^{-1}\{b\}\right)$.

Midterm Exam ow Ami (5,2013
Exercise 1
Operational semantics

$$
\begin{aligned}
& \frac{\langle a, \sigma\rangle \rightarrow n}{\langle\langle a\rangle, \sigma\rangle \rightarrow(\sigma, n)} \\
& \frac{\langle\bar{\sigma}, \sigma\rangle \rightarrow \sigma^{\prime \prime}\left\langle s, \sigma^{\prime \prime}\right\rangle \rightarrow\left(\sigma^{\prime}, n\right)}{\left\langle\varepsilon ; s^{\prime}, \sigma\right\rangle \rightarrow\left(\sigma^{\prime}, n\right)} \\
& \frac{\left\langle s_{0}, \sigma\right\rangle \rightarrow\left(\sigma^{\prime \prime}, n_{0}\right)\left\langle s_{1}, \sigma^{\prime \prime}\right\rangle \rightarrow\left(\sigma, \sigma_{1}\right)}{\left\langle s_{0}+s_{1}, \sigma\right\rangle \rightarrow\left(\sigma^{\prime}, n_{1}+n_{1}\right)} \\
& \frac{\langle s, \sigma\rangle \rightarrow(\sigma, n)}{\langle x \mid=s, \sigma\rangle \rightarrow \sigma[n / x]}
\end{aligned}
$$

Denotational semantics

$$
\begin{aligned}
& \varphi[(b a)] \sigma=(0,(a \| a] a) \\
& y \| c ; s] \sigma=\varphi \pi \sigma \|^{*}(b \pi \subset \pi \sigma) \\
& \varphi\left[\left[s_{0}+s_{1}\right] \vec{v}=\operatorname{case} \varphi\left[s_{0}\right] 0\right. \text { of } \\
& +\left(\frac{1}{2} \times N\right)_{1}:-(\bar{z} \times N) \\
& \left(\sigma^{\prime \prime}, n_{0}\right): \text { case } g[51]^{\prime \prime \prime} \text { of } \\
& 1(\bar{E} \times N)_{1}:+(\bar{E} \times N)_{1} \\
& \left(\sigma^{\prime}, n_{1}\right):\left(\sigma, n_{0}+n_{1}\right)
\end{aligned}
$$

Qperahional semauliks \rightarrow dematationel semachits

$$
\frac{\left\langle s_{0,},\right\rangle \rightarrow\left(\sigma_{1}^{\prime}, n_{0}\right)\left\langle s_{1} \sigma^{\prime \prime}\right\rangle \rightarrow\left(\sigma_{1}^{\prime},_{1}\right)}{\left.\left\langle s_{0}+s_{1}, \sigma\right\rangle\right\rangle\left(\sigma, n_{0}+n_{1}\right)}
$$

Denotáhoval semantics \rightarrow operational semachics

$$
P(\{a\}) \stackrel{d f}{=} \varphi\left[\{a\} \eta \sigma=(\sigma, n) \Rightarrow\langle\{a\}, r\rangle \rightarrow\left(\sigma^{\prime}, n\right)\right.
$$

$o b v o u s$ with $\sigma=\sigma$ and $(a[a] \sigma=\omega$, nemely $\langle a\rangle\rangle \rightarrow \infty$

$$
\begin{aligned}
& P(c ; s)=8[c ; s] \bar{\sigma}=(\sigma, n) \Rightarrow\langle c ; s, \sigma\rangle \rightarrow(F, n\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \text { and }\left\langle 5,{ }^{5 \prime}\right\rangle \rightarrow\left(i^{\prime}, n\right. \text { He rele caubeapplich }
\end{aligned}
$$

$$
\begin{aligned}
& \langle 5, \sigma\rangle \rightarrow(6 ;, n) \\
& \left.\left\langle x_{i}=5, \sigma\right\rangle \rightarrow \sigma[]^{n} / \frac{1}{x}\right] \\
& \text { Gो } x:=\subseteq \|_{j}=\sigma[n / x] \text { where } \frac{\varphi[[s] \sigma=(\sigma, n)}{4 \pi p o(t a s i j)}
\end{aligned}
$$

$$
\begin{aligned}
& \langle a, \sigma\rangle \rightarrow n \quad P(\leq\langle a\}, \sigma\rangle \rightarrow(\sigma, n\rangle)=\theta+\rho \mid\{(a)\rangle]] \sigma=(\sigma, n) \\
& \langle\langle a\}, \sigma\rangle \rightarrow(\bar{\sigma}, n) \text { obvious with URIa]a=}=n \\
& \frac{\langle\measuredangle, \sigma\rangle \rightarrow \sigma^{\prime \prime}\left\langle s, \sigma^{\prime \prime}\right\rangle \rightarrow(\sigma, n)}{\langle\varepsilon ; 5, \sigma\rangle \rightarrow(\sigma, n)}
\end{aligned}
$$

$$
\begin{align*}
& P\left(s_{p}+s_{1}\right) \stackrel{\text { det }}{=} \varphi\left[s_{0}+s_{1}\right] \sigma=(\sigma, n) \Rightarrow\left\langle s_{0}+\rho_{1}, \sigma\right\rangle \rightarrow(\sigma, n) \tag{3}
\end{align*}
$$

Hus法 hole cou be apried.

$$
\begin{aligned}
& P(x:=5) \Rightarrow 6 \| x:=5]\left(O=\sigma^{\prime} \Rightarrow\langle x:=5,0\rangle \rightarrow a^{\prime}\right.
\end{aligned}
$$

Huss Herdecan be aplied witt $\sigma^{\prime}=\sigma^{a}[m / x]$
The equivaleuke $\left(s_{0}+s_{1}\right)+s_{2} \equiv s_{0}+\left(s_{1}+s_{2}\right)$ does hold. Iu fact, bolk eleat) are couchuted by equivalecutpreeds

$$
\begin{aligned}
& \left\langle s_{1}, \sigma^{0}\right\rangle \rightarrow\left(\sigma_{1}^{m_{n}}\right)\left\langle s_{2}, \sigma^{m}\right\rangle \rightarrow\left(v^{\prime} ;^{n_{2}}\right) \\
& \left.\left\langle q_{0} \sigma\right\rangle \rightarrow\left(\sigma, n_{0}\right) \quad\left\langle s_{1}+\sigma_{2}, \sigma\right\rangle\right\rangle\left(\sigma, n_{1}+n_{2}\right) \\
& \left\langle s_{0}+\left(s_{1}+s_{2}, \sigma\right\rangle \rightarrow\left(\sigma, n_{0}+n_{1}+n_{3}\right)\right.
\end{aligned}
$$

The equivalence $\left(c_{0} ; s_{0}\right)+\left(c_{j} \xi_{1}\right) \equiv\left(c_{0} ; c_{1}\right) ;\left(s_{0}+s_{1}\right)$ does not hold H Gunter example is

$$
\begin{aligned}
& \langle\sigma ;(x:=0 ;[x\})+(x:=1 ;\{0\})\rangle \rightarrow(\sigma[1 k], 0) \\
& \langle\Gamma,(x:=0 ; x:=1)\{\{x\}+\{\sigma\}\rangle \rightarrow(\sigma[1 / x], 1)
\end{aligned}
$$

Exercise 2
Inference system R:

$$
\begin{aligned}
& \lambda \in L \quad \frac{x \in L}{a x b c \in L} \quad \frac{x+b y \in L}{x b y \in L} \quad x y \in L a, b, c l^{*} \\
& P(z \in l) \stackrel{\text { del }}{\Rightarrow}-{ }^{n} w_{n}, z=a^{n} w_{n} \quad w_{n}\left|a=0 w_{n}\right| b=n \quad w_{n} \mid c=n \\
& \frac{-}{\lambda E L} \quad n=0 \quad \omega_{n}=\lambda \quad \text { obvious } \\
& \frac{x \in L}{a x b c \in L} \quad x=a^{n} w_{n} \quad a x_{1} b c=a^{n+1} w_{n} b c \\
& n=n+1 \omega_{n+1}=w_{n} b c \text { VD } \\
& \frac{x \operatorname{cbg} \in l}{x b c y \in l} \quad x<b y=a^{n}{ }^{w} \quad x=a^{n} w \quad w<b y=w_{n} \\
& n^{\prime \prime}=n \quad w_{h}^{\prime}=w b c y \\
& x \in L \quad x=a^{n} \omega_{n}
\end{aligned}
$$

- w_{n} contains n bs and n c's, and does not contain cb

$$
\begin{gathered}
\Rightarrow w_{n}=b^{n} c^{n} \\
z=a^{n} b^{n} c \quad n=0,1, \cdots \quad z \in L^{?} ?
\end{gathered}
$$

Lemma
ton, a ${ }^{n}(b c)^{n} \in L$. Mathematical induction) obvious
Then apply ${ }_{\text {a }}$ last rule as menu as po mile.
When the prof terminates, we have $a^{4} b^{n} c \in L$ as shown The rod a lwaystormiketes. If we write
$(b c)^{n}=b_{1} c_{1} b_{2} c_{2}+b_{n} c_{n}$ we need to apply the less
rule exactly $1+2+\cdots=\frac{n(n-1)}{2}$ times,

Exeraye 3

$$
I=\operatorname{rec} f, \text { inn fnitheel } 0 \text { ese } f n-1 \text { hen 1 ake } 2 \times 1(f(n-2))-(f(n-i n)
$$

$$
P(0), P(1)
$$

Malkematical induchion Strong! $P(K), P(x+1) \rightarrow P(k+2)$

$$
\begin{aligned}
& P(K) \stackrel{d f}{=} t \rightarrow K \Rightarrow(1 t) \rightarrow K \\
& P(0) \stackrel{\text { dft }}{=} t \rightarrow 0 \Rightarrow(I t)^{?} \rightarrow 0 \quad t \rightarrow 0 \\
& \text { if } t \text { then } 0 \text { else if } t-1 \text { luent else } 2 \times(I(r-2))-(I(t-1)+\xi \rightarrow n
\end{aligned}
$$

$$
\begin{aligned}
& P(1) \stackrel{d y}{=} t \rightarrow 1 \Rightarrow(I t) \rightarrow 1 \quad t \rightarrow 1 \quad(I t) \rightarrow 1 \\
& <t \rightarrow n, n \neq 0 \text {; if } t-1 \operatorname{Hem}_{t \rightarrow 1} \text { 1efle } \underset{c=1}{2 \times(t(t-2))-(I(t-1)+B \rightarrow c} \\
& \leftarrow t-1 \rightarrow 0 \quad 1 \rightarrow c \underset{t \rightarrow 1}{t \rightarrow 1} 1 \rightarrow c<c=1 \quad c \mathrm{c}, ~ \\
& P(K) \stackrel{\text { det }}{=} t \rightarrow K \Rightarrow(I t) \rightarrow K \\
& P(k+1)=\text { oet } H \rightarrow k+1 \Rightarrow(\Sigma \mid) \rightarrow(k+1) \\
& \text { afsumphion } \\
& P(k+2)=\text { aff } t \rightarrow k+2 \rightarrow(I-) \rightarrow \alpha+2 \quad \text { is prove } \\
& t \rightarrow k+2 \quad k \geqslant 0 \quad(\underline{I}) \rightarrow k+2 \\
& \leftarrow 2 \times(I(t-2))-(I(t-1))+3 \rightarrow c \quad c^{?}=K+2 \\
& c=2 \times c_{1}-c_{2}+3 \quad(I(t-2)) \rightarrow c_{1}(I(F-1)) \rightarrow c_{2} \\
& t-2 \rightarrow c_{3} \frac{c_{2} c_{4}^{2}}{c_{1}=c_{1}} t \rightarrow c_{4} \quad \frac{c_{4}=k+2}{4} \quad c_{3}=k \quad\left(1(t-2) \rightarrow K \quad c_{1}=k\right. \\
& \left.t-1 \rightarrow c_{5} c_{5}=c_{4} 1 \quad\right] \quad c_{5}=k+1 \quad\left(I(t-1) \rightarrow k+1 \quad c_{2}=k+1\right. \\
& c=2 \times k-(k+1)+3=k+2 \text { cuD. }
\end{aligned}
$$

Well Founded recursion

$$
\begin{aligned}
& B, C=\omega \\
& F(b, h)=\operatorname{case} b \text { of } \\
& \text { 0:0 } \\
& \text { 1:1 } \\
& k+2: 2 \times 4(k)-h(k+1)+3 \\
& I(b)=F(b, I f<-2, b 3)=\operatorname{case} b o h \\
& \text { 0:0 } \\
& \text { 1:1 } \\
& k+2: 2 * I(k)-I(k+1)+3
\end{aligned}
$$

Or alternatively

$$
\begin{aligned}
& I(0)=0 \\
& I(1)=1 \\
& I(k+2)=2 \times I(k)-I(k+1)+3
\end{aligned}
$$

Being identity $I(k)=F$ a solutson, it \mathbf{y} the ouly Isbation.

