Models of Computation

Written Exam on June 6, 2013

(First part: Exercises 1 and 2, 90 minutes
Second part: Exercises 3, 4 and 5, 90 minutes)
(Previous TSD students: Exercises 1, 2 and 3, 120 minutes)

Exercise 1 (7)

Given the IMP command

$$
w=\text { while } x \neq 0 \text { do }(y:=y+2 x ; x:=x-1)
$$

prove that, for every $\sigma, \sigma^{\prime} \in \Sigma$,

$$
\langle w, \sigma\rangle \rightarrow \sigma^{\prime} \text { implies } \sigma(x) \geq 0 \wedge \sigma^{\prime}(y)=\sigma(y)+(\sigma(x)+1)^{2}-(\sigma(x)+1)
$$

while $\sigma(x)<0 \Rightarrow\langle w, \sigma\rangle \nrightarrow$.

Exercise 2 (8)

Given a set U, its totally ordered subsets (TOS) are defined as the pairs (S, \leq) where $S \subseteq U$ and \leq a total ordering on S, namely \leq is a partial ordering on S with, in addition, $\forall s_{1}, s_{2} \in S . s_{1} \leq s_{2} \vee s_{2} \leq$ s_{1}. On TOSes, a relation \sqsubseteq is defined as $\left(S_{1}, \leq_{1}\right) \sqsubseteq\left(S_{2}, \leq_{2}\right)$ iff $S_{1} \subseteq S_{2}$ and $\leq_{1} \subseteq \leq_{2}$. Prove that TOSes with \sqsubseteq form a complete partial ordering with bottom. Given two TOSes, their lub (least upper bound) and their glb (greatest lower bound) are always defined? If not, give counterexamples.

Exercise 3 (5)

Modify the denotational semantics of HOFL for the conditional statement as follow:
\llbracket if $t_{0}:$ int then $t_{1}: \tau$ else $t_{2}: \tau \rrbracket \rho=\operatorname{Condd}\left(\llbracket t_{0} \rrbracket \rho, \llbracket t_{1} \rrbracket \rho, \llbracket t_{2} \rrbracket \rho\right)$ where
$\operatorname{Condd}\left(z_{0}, z_{1}, z_{2}\right) \stackrel{\text { def }}{=}$ if $z_{0}=\lfloor 0\rfloor$ or $z_{1}=z_{2}$ then z_{1} else if $z_{0}=\lfloor n\rfloor, n \neq 0$ then z_{2} else $\perp_{\left(V_{\tau}\right)_{\perp}}$.
Prove that if $\tau=i n t$ than Condd is monotone continuous, while if, e.g., $\tau=i n t * i n t$ then Condd is not monotone. (Hint: Take $t_{1}=$ if t_{\perp} then $\left(0, t_{\perp}\right)$ else $\left(0, t_{\perp}\right)$ and $t_{2}=$ if t_{\perp} then $(0,0)$ else $\left(0, t_{\perp}\right)$, where $t_{\perp}=$ rec xint.x.) Explain why the counterexample does not apply when $\tau=$ int.

Exercise 4 (5)

Consider the π-calculus agent $P=!((y) \bar{x} y!!(\bar{x} y . n i l))$, give the proof of its first transition and describe informally its behavior. Finally define its trace semantics namely the set $\left\{\alpha_{1} \alpha_{2} \ldots \alpha_{n} \mid \exists Q . P \xrightarrow{\alpha_{1}}\right.$ $\left.\ldots \xrightarrow{\alpha_{n}} Q\right\}$.

Exercise 5 (5)

A DT Markow circle is a DTMC consisting of a family $S=\left\{s_{i}\right\}_{i=1, \ldots, n}$ of states. The transitions are as follows, for $i=1, \ldots, n-1$:

$$
s_{i} \xrightarrow{a_{i}} s_{i+1} \quad s_{i} \xrightarrow{1-a_{i}} s_{i} \quad s_{n} \xrightarrow{a_{n}} s_{1} \quad s_{n} \xrightarrow{1-a_{n}} s_{n}
$$

Prove for which values of the parameters Markov circles are ergodic, and find the steady state probabilities of all the states. Finally, assume that $a_{i}=a, i=1, \ldots n$, and define all possible parti-

MOD -Written Exam on June 6,2013

Exercise 1
Proof by special rutcinduction $P\left(\langle\omega, r\rangle \rightarrow \sigma^{\prime}\right) \underline{\operatorname{dof}} \sigma(x) \geqslant 0$

$$
\begin{aligned}
& \frac{\langle x \neq 0, \sigma\rangle \rightarrow \text { felfe }}{\langle\omega, \sigma\rangle \rightarrow \sigma} \\
& \sigma(x)=0 \\
& \sigma^{\prime}(y)=\sigma(y)+(\sigma(x)+1)^{2}-\sigma(x)-1 \\
& \sigma(x) \geqslant 0 \\
& \sigma(y)=\sigma(y)+1-1=\sigma(\psi) \quad Q E D . \\
& \frac{\langle x \neq 0, r\rangle \rightarrow \text { true }\langle y:=y+2 x ; x:=x-1, \sigma\rangle=\sigma^{\prime \prime}\left\langle\omega, \sigma^{\prime \prime}\right\rangle \rightarrow \sigma^{\prime}}{\langle\omega, \sigma\rangle \rightarrow \sigma^{\prime}} \\
& \sigma(x) \neq 0 \quad \sigma^{\prime \prime}=\sigma[\sigma(y)+2 \sigma(x) / y, \sigma(x)-1 / x] \\
& \sigma^{\prime \prime}(x) \geqslant 0 \quad \sigma^{\prime}(y)=\sigma^{\prime \prime}(y)+\left(\sigma^{\prime \prime}(x)+1\right)^{2}-\sigma^{\prime \prime}(x)-1 \\
& \sigma(x) \geqslant 0 \quad \sigma^{\prime \prime}(x)=\sigma(x)-1 \quad \sigma(x)=\sigma^{\prime \prime}(x)+1 \geqslant 0 \quad \text { QED } \\
& \sigma^{\prime}(y) \stackrel{?}{=} \sigma(y)+(\sigma(x)+1)^{2}-\sigma(x)-1 \\
& \sigma^{\prime}(y)=\sigma(y)+2 \sigma(x)+(\sigma(x)-1+1)^{2}-(\sigma(x)-1)-1 \\
& =\sigma(y)+2 \sigma(x)+(\sigma \sigma)+1)^{2}-2(\sigma(x)+1)+1-\sigma(x) \\
& =\sigma(y)+(\sigma(x)+1)^{2}-\Gamma(x)-1 \quad \text { QED. }
\end{aligned}
$$

We prove $\langle\omega, \sigma\rangle \nrightarrow f \sigma(x)<0$ witt He rote:

$$
\frac{\sigma \in S^{\prime} \forall \sigma^{\prime} \in S,\left\langle c, \sigma^{\prime}\right\rangle \rightarrow \sigma^{\prime \prime} \Rightarrow \sigma^{\prime \prime} \in S^{\prime} \quad \forall \sigma^{\prime} \in S_{,}^{\prime}\left\langle b, \sigma^{\prime}\right\rangle \rightarrow \text { true }}{\langle w, \sigma\rangle \nrightarrow}
$$

where $S=\{(\rho(x)<0\}$. $\operatorname{In}(a+5, \sigma(x)<0 \Rightarrow \sigma(x)-1<0$

Exercise 2

We prove 5 is a partied ordering,

$$
\begin{aligned}
& (S, S) \subseteq\left(S_{1} \leq\right) \Leftrightarrow S \subseteq S \text { and } E \subseteq \leq \text { obvious } \\
& \left\{\begin{array}{l}
\left(s_{1}, s_{1}\right)=\left(s_{2}, s_{2}\right) \Leftrightarrow S_{1} \leq_{2} \leqslant_{1} \subseteq s_{2} \\
\left(S_{2}, s_{2}\right) \varepsilon\left(s_{1}, s_{1}\right) \Leftrightarrow S_{2} \leq_{1} \leqslant_{2} \leq \leqslant_{1}
\end{array}\right\} \begin{array}{l}
s_{1}=s_{2} \\
\leqslant_{1}=s_{2}
\end{array} \text { FD } \\
& \left.\left(S_{1}, \leqslant_{1}\right) \subseteq\left(S_{2}, \leqslant_{2}\right) \Leftrightarrow S_{1} \subseteq S_{2} \leqslant_{A} \subseteq S_{2}\right] S_{1} \varepsilon S_{3}
\end{aligned}
$$

will bottom.
(ϕ, ϕ) is the smallest elencit. This a totelordering: $\forall S_{1}, S_{2}, S_{1} \leq S_{2} \vee S_{2} \leqslant s_{1}$: quantification is rectum.

Complete PO

$$
\left(S_{0}, s_{0}\right) E\left(s_{1}, s_{1}\right) \subseteq \cdots \cos \operatorname{lab}\left(U s_{i}, U s_{i}\right)=(s, s)
$$

We must prove that S is a total ordering. $W \in$ assume $S_{1}, S_{2} \in S^{\prime}$ and we must prove $K_{2} t$ $S_{1} \leqslant S_{2}$ or $S_{2} \leqslant S_{1}$. Assume tat for sue $K S_{1}, S_{2} \in S_{K}^{\prime}$ and e_{1}^{\prime} ter $S_{1} \leqslant_{k} S_{2}$ or $S_{2} \leq_{k} S_{1}$. Since \leq is bogor Han $\leqslant k$, we will ald here $S_{1} \leqslant S_{2}$ or $S_{2} \leqslant S_{1}$.

Witter tubs nor glt are always define
Example: $\left.U=\{a, b\} \quad S_{1}=\left(\{a j,\{(a, a)]) S_{2}=(\{b\}\},(b, b)\right\}\right)$
Two possibilities: $\left.S_{f u b}=(\{a, b\}, y(a, a),(b, b),(a, b)\}\right) S_{\text {lab with }(b, a)}^{\prime}$ Similarly, taking leges of $S_{\text {lab }}$ and $S_{\text {tub }}^{\prime}$ you get either S_{1} or S_{2}

Exercise 3

- Cave $\tau \neq i n t$

Function Condo is concinnous it every argument
Take z_{0}. Then te domain is that and it is enough to prove monotonicity
Two cases:

- $z_{1}=z_{2}=\bar{z}$. Therefuection cana $\left(z_{0}, \bar{z}, \bar{z}\right)$ is a construct with z_{0}
- $1_{1_{1}} \leq 101$ and $z_{1} \neq z_{2}$. Then $\left.\operatorname{Cond}\left(L_{(1,}, z_{1}, \frac{z}{2}\right) \leq \operatorname{Cond}(L 0), z_{1}, z_{2}\right)$ is pious since $\operatorname{Cout}\left(L_{H_{1}}, z_{1} z_{2}\right)=L_{x_{2}}$

TaKe z_{1}. Again it domain isfet \rightarrow monotocienty cases
- $z_{0}=1_{N_{1}} z_{2}=1_{N_{1}}$ Theme Gond $\left(\theta_{0}, z_{1}, z_{2}\right)$ is the constant $L_{N_{1}}$

- $z_{0}=10 j$ Then $\operatorname{Condd}\left(z_{0}, z_{1}, z_{2}\right)$ is He identity.
- $z_{0}=\lfloor n\rfloor n \neq 0$ then (Ind $\left(z_{0}, v_{1}, z_{2}\right)$ is the constacit z_{2}

Take z_{2}. Similarly to z_{1}

- Case $t=$ int *int

Counterexample: $\left[I_{1} \|_{P}=\right.$ (and (Irax.xip, $[1, \text { recex.r) }]_{p}$,

$$
\begin{aligned}
& \left.\left[t_{2} \| \rho=\operatorname{condd}\left(\perp_{N_{1}}, L(0,0)\right], L\left(0, L_{M_{1}}\right)\right\rfloor\right)=\perp\left(\text { intanin }_{\perp}\right)_{\perp}
\end{aligned}
$$

Thus while $\llbracket(0$, rec $x, x) \rrbracket \rho \leq[(0,0)] \rho$ we have $\left[t t_{1}\right] \rho \nsubseteq\left[t_{2}\right] \rho$.

Exerase 4

$$
\begin{aligned}
& \|((y) \bar{x} y \cdot|(\bar{x} y, n x) \rightarrow Q \leftarrow P|(y) \overline{x y} \cdot \mid(\bar{x} y, m e) \xrightarrow{Q} Q \\
& \frac{Q=|P| Q_{1}}{-\infty / \bar{x}]}\left(y, \mid(\bar{x} y, m Q) \xrightarrow{\alpha} Q_{1} x \in \operatorname{bn}(d)\right. \\
& \frac{Q_{1}=Q_{2}[w]}{=\bar{x}(w)} \bar{x} y!(\bar{x} y, u C) \xrightarrow{\bar{x} y} Q_{2} \quad w \neq x \\
& \angle Q_{2}=1(x, n, i l) \\
& !\left((y) x y,\left|(x y, m e)^{\bar{x}(w)} P\right|!x^{x} \omega \cdot \text { uml } \quad \omega \neq x\right.
\end{aligned}
$$

Apout? on produce ony unuber of procesfes of Ite form! $\bar{x} w_{i}$, ux, where w_{i} is diverent from x and from all wj pievously extroded As soow as a process ! x w_{i}, in il is created, it can stert seuding on channel \bar{x} any vumber of Werlage> $\bar{x} \omega_{1}$.
The trace semaw lise of P Hews coutaing all to strings of He brue

$$
\begin{aligned}
\bar{x}\left(w_{0}\right) \cdot\left\{x w_{0}\right\}^{*} \cdot \bar{x}\left(w_{1}\right) \cdot\left\{x \omega_{0}, x w_{1}\right\}^{*} \cdots \cdots & \neq j \Rightarrow \\
\cdots \bar{x}\left(w_{n}\right) \cdot\left\{x w_{i}\right]_{i=1}^{*}, \cdots w_{i} & \neq j, w_{j} \text { and } \\
& \neq x
\end{aligned}
$$

where V^{*} is tee set of allstrings ou V and $\left[w_{i}\right]_{i}$ ws is a family of names all difterent ound ditferout frow x.

Exercise 5

- To be ergodic we must hare $a_{i} \neq 0, i=1, m_{i} n$ to guarantee reachability, and should exist i witt $a_{i} \neq 1$, otherwise all pet t ave of leugith n.
- The steady state eputhous are

$$
\begin{aligned}
& a_{n} s_{n}+\left(1-a_{1}\right) s_{1}=s_{1} \quad a_{n} s_{n}=a_{1} s_{1} \\
& a_{i-1} s_{i-1}+\left(1-a_{i}\right) s_{i}=s_{i} \quad a_{i-1} s_{i-1}=a_{i} s_{i} \quad a_{i} s_{i}=a_{j} s_{j} \\
& a_{n-1} s_{n-1}+\left(1-a_{n}\right) s_{n}=s_{n} \quad a_{n-1} s_{n-1}=a_{n} s_{n} \\
& s_{1}+\frac{a_{1}}{a_{2}} s_{1}+\cdots+\frac{a_{1}}{a_{n}} s_{1}=1 \quad s_{1}=\frac{1}{1+\frac{a_{1}}{a_{2}}+\cdots+\frac{a_{1}}{a_{n}}} \\
& s_{1}=\frac{1}{a_{1}} \frac{1}{\frac{1}{a_{1}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}}}} \\
& s_{i}=\frac{1}{a_{i}} \frac{1}{\frac{1}{a_{1}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}}}} \quad i=1, \cdots, n
\end{aligned}
$$

- It is easy to see Par contiguous states cannot be leauped together: eng. for $\left\{s_{1}, s_{2}, s_{3}\right\}$ to be a bisimulalion clean, we must have $\alpha\left(s_{1}\right)\left(\left[s_{4}\right]\right)=\alpha\left(s_{2}\right)\left(\left[s_{4}\right]\right)=\alpha\left(s_{3}\right)\left(\left[s_{4}\right]\right)$, but the first two values are necessevilg 0 , while the third is α_{3}.
Thus he only posubility is to pick up a divisor d of w and to let $s_{i} \simeq s_{j}$, if $i=j \bmod d_{\text {. The " minimal " Markov circle }}$ is a Marco circle with r / a states and He sauce trantivow probability a.

