Models of Computation

Written Exam on January 8, 2013

(MOD students: Exercises 1-5, 180 minutes Previous TSD students: Exercises 1-3, 120 minutes)

Exercise 1 (8)

Given the IMP command

c = while
$$x \neq 0$$
 do $(x := x - 1; y := y + 1; z =: z \times y)$

prove that, for every $\sigma, \sigma' \in \Sigma$,

$$\langle c, \sigma \rangle \to \sigma'$$
 implies $\sigma(y) > 0 \Rightarrow \sigma(x) \ge 0 \land \sigma' = \sigma[0/x, \sigma(y) + \sigma(x)/y, n/z]$
with $n = \sigma(z)(\sigma(y) + \sigma(x))!/\sigma(y)!$

while $\sigma(x) < 0 \Rightarrow \langle c, \sigma \rangle \not\rightarrow$.

Exercise 2(6)

Given a signature Σ , consider the relation $\sqsubseteq = \langle * \rangle$ between terms $t \in T_{\Sigma}$ in Σ which is the reflexive and transitive closure of the subterm-term relation $\langle \rangle$ defined as $t_i \langle f(t_1, \ldots, t_n), 1 \leq i \leq n$. Prove that \sqsubseteq is a partial ordering. Finally discuss when, depending on particular choices of Σ , such an ordering is complete and/or with bottom.

Exercise 3(6)

Extend the syntax of HOFL lazy adding the *pairing* construct $\langle t_1, t_2 \rangle$ of functions $t_1 : \sigma \to \tau_1$ and $t_2 : \sigma \to \tau_2$, both having arguments of type σ . Here $\langle t_1, t_2 \rangle : \sigma \to \tau_1 * \tau_2$ defines the function which, given an argument d, returns the pair (r_1, r_2) , where r_1 is the result of t_1 given $d \in r_2$ the result of t_2 given d.

For the new construct define: (i) a type rule; (ii) the operational semantics, in such a way that the construct is immediately reduced to canonical form; and (iii) the denotational semantics. Finally prove that, for every (closed) term (t), the terms $(\langle t_1, t_2 \rangle t)$ and $((t_1, t), (t_2, t))$ have: (i) the same type; (ii) the same canonical form; and (iii) the same denotational semantics.

Exercise 4(5)

Given the μ -calculus formula $\Phi = \mu x.((p \land \Box x) \lor (\neg p \land \diamondsuit x))$ write its denotational semantics $\llbracket \Phi \rrbracket \rho$ and evaluate it on the LTS below.

Exercise 5 (5)

Consider the π agent $P = (x)(P_1|P_2)$, with $P_1 = !((y)\overline{z}y.!(\overline{x}y.nil))$ and $P_2 = !(x(y).x(y').\overline{y}y'.nil)$, and describe informally its behavior. In particular, define a sequence of transitions from P (which has just the free name z) to a state P' where there are three additional free names y_1, y_2, y_3 , and the behavior of P' includes any number of transitions labelled by $\overline{y_i}y_j$ for $y_i, y_j = y_1, y_2, y_3$.

Pro va Scritta del 08/01/13 Esercizio 1 a) per indusion fulle regate det white $P(\langle c, \tau \rangle \rightarrow \sigma') \stackrel{\text{def}}{=} \sigma(y) > 0 \implies \sigma(x) \ge 0 \land \sigma' = \sigma[\sigma(x, \sigma(x) + \sigma(y), \pi/z]$ $n = \sigma(y)(\sigma(y) + \sigma(x))! / \sigma(y)!$ $\frac{\sigma(\mathbf{x}) = \sigma}{\zeta(s) \to \sigma} = \frac{\rho(z) \to \sigma}{\varphi(z) \to \sigma} = \frac{\sigma(z)}{\sigma(z)} = \frac{\rho(z)}{\sigma(z)} = \frac{\rho(z)}{\sigma$ owto. CVD. x C, F > -> J $\sigma(x) \neq 0 \quad \sigma'' = \sigma\left[\sigma(x) - \frac{1}{x}, \sigma(x) + \frac{1}{y}, \sigma(x)\right]$ Assuminand les premiere $\overline{(5)}$ Quindi andre 5''(9) = 5(3) + 1 > 0. $\overline{(1)} = 5''(2) \times 5''(3) \times 5(3) \times (5(3) + 5(2)) / (5(3) / 2] dell' poteri induct.$ essendo vere le premiere $\sigma'(x)\ddot{z}_{0} \sigma' = \sigma [\sigma/x, \sigma(x) + \sigma(z)/y, \sigma(z)) + \sigma(z)) / \sigma(z) / z]$ $\sigma''(x) = \sigma(x) - 4 \quad \sigma(x) \ge 1 \ge 0 \quad CUD.$ $\sigma' = \sigma \left[\frac{\sigma(w)}{2} + \frac{1}{2} \right] \frac{\sigma(w)}{2} + \frac{1}{2} \frac{\sigma(w)}{2} + \frac{$ $= \mathcal{T}[\sigma/2,\sigma(2)+\mathcal{T}(\sigma)/2,\sigma(2)(\sigma(2)+\mathcal{T}(\sigma))/(\sigma(2)-\mathcal{T}(\sigma))/(\sigma(2))/2] = \mathcal{T}[\sigma/2,\sigma(2)+\mathcal{T}(\sigma)/2,\sigma(2)(\sigma(2)+\mathcal{T}(\sigma))/2]/2] = \mathcal{T}[\sigma/2,\sigma(2)+\mathcal{T}(\sigma)/2,\sigma(2)(\sigma(2)+\mathcal{T}(\sigma))/2]/2] = \mathcal{T}[\sigma/2,\sigma(2)+\mathcal{T}(\sigma)/2,\sigma(2)(\sigma(2)+\mathcal{T}(\sigma))/2]/2] = \mathcal{T}[\sigma/2,\sigma(2)+\mathcal{T}(\sigma)/2]/2]$ b) Usando læ repole di inferense: $7065. KG07 \rightarrow 7' \Rightarrow 765 ABTOJTO=TRE$ $<math>\leq \sqrt{17}(0) < 0$ $\forall CS < C, 77 \rightarrow 7' O \in S? = 0 [2-1/2] CVD.$ $T \in S' BT \neq 0 I = M e CVD.$

Está 202

Essendo == <* le proprieté rifletore e succetvice valfors per castropoure. La propriete

2)

auhis Willen & yale in quart

É une relezone acichice (addinitture bace foudato) e l'opore roue di chiosure tracetitive iou introduce adi.

Cado cezo e lezn pare 2 ou 1- adiche

In talcato $T_{\Xi} = uu$ indicute infinite. La cateria $t_0 = C = t_1 = f(t_0 \dots t_0) = t_2 = f(t_1 \dots t_1) = \dots$

vou la netsur maggioraute u TE.

Caso $\overline{z}_0 = 0$

Jural caso Tz & rusto. Quindi completo

e seura bottolle.

 $(ab \quad \overline{Z}_n = \phi, n \neq 0$

Allore = z un ordinaments directo (ti=tz= ti=tz) purdi can ateme fuite (di un sabele recento) puindi completo.

3 GAD Zo=Zcz singletore L'ordicausent $(T_{\overline{z}}, \overline{z})$ for come bollow Caso To now singleton $(T_{\overline{z}}, \Xi)$ use le minister voor te $\overline{z}_{\sigma} = 0$ e più di un elements ministrale se \overline{z}_{σ} be due opiù element. Guicordi de Tzepeneret latter regla diufarense; $t_i \in T_{\Xi}$ is shown $p \in \Xi_{ij}$ $f(t_1, \dots, t_m) \in \mathbb{T}_{\mathbb{Z}}$

Exercise 4

[uz. ((pADz) v(~pADz))]p= = fix As. (ppnfo/dv: 5->v; 5ES) い (コアアハウワノフワ: 5-30,065)

$$S_{n} = \phi$$

$$S_{n} = \{4\} \cap \{2,4\} \cup \{1,2,3\} \cap \phi = \{4\}$$

$$S_{2} = \{4\} \cap \{2,3,4\} \cup \{1,2,3\} \cap \{3\} = \{3,4\}$$

$$S_{3} = \{4\} \cap \{2,3,4\} \cup \{1,2,3\} \cap \{4,3\} = \{1,3,4\}$$

$$S_{4} = \{4\} \cap \{2,3,4\} \cup \{1,2,3\} \cap \{4,3\} = \{1,3,4\} = S_{3} = fix$$

•

Exercise 5

Appent P₁ can extrude new neuros
$$y_1, y_2, \cdots$$

and create corresponding a goals
 $P_1 = !(xy, wc), Q_2 = !(xy, wc), \cdots$
which are able to communicate on cheanel >
multiples of times the new neuros y_1, y_2, \cdots .
Agant P₂ is able to receive (any number of times) on n
pairs of such new neuros, and to create merseges
 y_1, y_2, \cdots , which can be suit an chennel y_2 .
 $(x)(P_1|P_2) \xrightarrow{2(3n)} (x)(P_1|P_2|Q_1) \xrightarrow{2(3n)} (x)(P_1|P_2|Q_1|Q_2)$
 $\xrightarrow{\frac{1}{2}(32)} (x)(P_1|P_2|Q_1) \xrightarrow{2(3n)} (x)(P_1|P_2|Q_2|Q_2|Q_3) \xrightarrow{x(4')} y_3' wt)$
 $\xrightarrow{T} (x)(T_1|P_2|Q_1|Q_2|Q_3) \xrightarrow{T} (x)(P_1|P_2|Q_2|Q_2|Q_3) \xrightarrow{x(4')} y_3' wt)$
 $\xrightarrow{T} (x)(T_1|P_2|Q_1|Q_2|Q_3) \xrightarrow{T} (x)(P_1|P_2|Q_2|Q_3|x(4')y_3' wt)$
 $\xrightarrow{T} (x)(T_1|P_2|Q_1|Q_2|Q_3) \xrightarrow{T} (x)(P_1|P_2|Q_2|Q_3|x(4')y_3' wt)$
 $\xrightarrow{T} (x)(T_1|P_2|Q_1|Q_2|Q_3|\overline{x}_3, \cdots e|\overline{x}_3, \cdots e|\overline{x}_3, \cdots e|\overline{x}_3, y_3, \cdots e|\overline{x}_3,$