Models of Computation

Written Exam on January 8, 2013

(MOD students: Exercises 1-5, 180 minutes Previous TSD students: Exercises 1-3, 120 minutes)

Exercise 1 (8)

Given the IMP command

$$
\mathrm{c}=\text { while } x \neq 0 \text { do }(x:=x-1 ; y:=y+1 ; z=: z \times y)
$$

prove that, for every $\sigma, \sigma^{\prime} \in \Sigma$,

$$
\begin{array}{cc}
\langle c, \sigma\rangle \rightarrow \sigma^{\prime} \text { implies } & \sigma(y)>0 \Rightarrow \sigma(x) \geq 0 \wedge \sigma^{\prime}=\sigma[0 / x, \sigma(y)+\sigma(x) / y, n / z] \\
\text { with } n=\sigma(z)(\sigma(y)+\sigma(x))!/ \sigma(y)!
\end{array}
$$

while $\sigma(x)<0 \Rightarrow\langle c, \sigma\rangle \nrightarrow$.

Exercise 2 (6)

Given a signature Σ, consider the relation $\sqsubseteq=<^{*}$ between terms $t \in T_{\Sigma}$ in Σ which is the reflexive and transitive closure of the subterm-term relation $<$ defined as $t_{i}<f\left(t_{1}, \ldots, t_{n}\right), 1 \leq i \leq n$. Prove that \sqsubseteq is a partial ordering. Finally discuss when, depending on particular choices of Σ, such an ordering is complete and/or with bottom.

Exercise 3 (6)

Extend the syntax of HOFL lazy adding the pairing construct $<t_{1}, t_{2}>$ of functions $t_{1}: \sigma \rightarrow \tau_{1}$ and $t_{2}: \sigma \rightarrow \tau_{2}$, both having arguments of type σ. Here $<t_{1}, t_{2}>: \sigma \rightarrow \tau_{1} * \tau_{2}$ defines the function which, given an argument d, returns the pair $\left(r_{1}, r_{2}\right)$, where r_{1} is the result of t_{1} given d e r_{2} the result of t_{2} given d.

For the new construct define: (i) a type rule; (ii) the operational semantics, in such a way that the construct is immediately reduced to canonical form; and (iii) the denotational semantics. Finally prove that, for every (closed) term (t), the terms $\left(<t_{1}, t_{2}>t\right)$ and $\left(\left(t_{1} t\right),\left(t_{2} t\right)\right)$ have: (i) the same type; (ii) the same canonical form; and (iii) the same denotational semantics.

Exercise 4 (5)

Given the μ-calculus formula $\Phi=\mu x .((p \wedge \square x) \vee(\neg p \wedge \diamond x))$ write its denotational semantics $\llbracket \Phi \rrbracket \rho$ and evaluate it on the LTS below.

Exercise 5 (5)

Consider the π agent $P=(x)\left(P_{1} \mid P_{2}\right)$, with $P_{1}=!((y) \bar{z} y!!(\bar{x} y . n i l))$ and $P_{2}=!\left(x(y) \cdot x\left(y^{\prime}\right) \cdot \bar{y} y^{\prime} \cdot n i l\right)$, and describe informally its behavior. In particular, define a sequence of transitions from P (which has just the free name z) to a state P^{\prime} where there are three additional free names y_{1}, y_{2}, y_{3}, and the behavior of P^{\prime} includes any number of transitions labelled by $\overline{y_{i}} y_{j}$ for $y_{i}, y_{j}=y_{1}, y_{2}, y_{3}$.

Prova Scrita del 08/01/13

Esercidion
a) Per iedw 20 a futte regote det white.

$$
\begin{aligned}
& P\left(\langle C, \Gamma\rangle \rightarrow \sigma^{\prime}\right) \text { def } \sigma(y)>0 \Rightarrow \tau(x) \geqslant 0 \sigma^{\prime}=\sigma[0(x, G(x)+\sigma / s) / n / 2] \\
& n=\sigma(z)(\sigma(y)+\sigma(x))!\sigma(y)! \\
& \begin{array}{l}
\sigma(x)=0 \\
\langle\langle, \sigma\rangle \rightarrow \sigma
\end{array} \quad P(\langle\tau, \sigma, \rightarrow \sigma)=\sigma(y)>0 \Rightarrow \sigma(x) \geqslant 0 \Lambda \sigma=[[0 / x, \sigma(a) \sigma(z) / 7] \\
& \text { owto. CVO. } \\
& \frac{\sigma(x) \pm 0\langle x:=x-1 ; y:=y+1, z:=z \times y, \sigma\rangle \rightarrow \sigma^{\prime \prime}\left\langle<\sigma^{\prime \prime}\right\rangle \rightarrow \sigma^{\prime}}{\left\langle c_{1} \sigma\right\rangle \rightarrow \sigma^{\prime}} \\
& \sigma(x) \neq 0 \quad \sigma^{\prime \prime}=\sigma[\sigma(x)-1 / x, \sigma(\bar{x})+1 / \sigma, \sigma(z)(\sigma / g)+1 / z]
\end{aligned}
$$

Assumaran la pencerbe $\sigma(y)$ po quind auche $\sigma^{\prime \prime}(y)=\sigma^{\prime}(y)+1>0$.

$$
\begin{align*}
& \text { esseudo varelo premedter } \\
& \sigma(x) \geqslant 0 \quad \sigma^{\prime}=\sigma[0 / x, \sigma(x)+\sigma(y) / y, \sigma(x)(\sigma(\gamma)+\sigma(x)) / / \sigma(y)+\mid z] \\
& \sigma^{\prime \prime}(x)=\sigma(x)-1 \quad \sigma(x) \geqslant 1 \geqslant 0 \quad \text { cul. } \\
& \sigma^{\prime}=\sigma\left[\sigma(x)-1 / x, \frac{s(q+1 / y,}{} \sigma(z) \sigma(\eta) / z\right][q / x, \sigma(x)+1+\sigma / y+1 / y . \\
& \sigma(t)(\sigma(y)+1)(\sigma(y)+x+\sigma(x)-1)!(\sigma(\partial)+1)!/ z] \\
& =\sigma[\theta / x, \sigma(x)+F(g) / y, \sigma(t)(\sigma(g)+\sigma(x))!/ \sigma(g)!/ z] \text { CND. } \tag{y}
\end{align*}
$$

 $S=\{\sigma(\sigma(0)<0\} \quad \nabla \in S\langle\subset, \sigma\rangle \rightarrow \sigma \quad \sigma \in S ? \quad \sigma=\sigma[x-1 / x]$ cuD $\sigma \in S \quad B D x \neq 0 D=m e \quad C V D$.

Eseratao2
 valfar por cantrobince. Laproporeta aulvivenetrie vale in quactrt $<$ é wur rela 2 oue acichica (addinture bou foudatos) e loporedidue dictuosure tratadive Lor rettoduce cida.

Ine Paqubects delle
cado ctE- e $f \in \Sigma_{n}$ opare 2 out u-adiche

In ratcrfo T_{E} ému modienc lifunto lacateve

$$
F_{0}=c \Sigma t_{1}=f\left(t_{0}, t_{0}\right) \Sigma t_{2}=f\left(t_{1} t_{1}\right) E \square
$$

wai la netswn mafioraute mota.
Cabo $\quad \overline{\Sigma_{0}}=\varnothing$
Iutal ooso $\frac{t}{z}$ a vupto quind coupleto esenva bottolle.
Cab $\bar{z}_{n}=\phi_{1}, n \neq 0$
Allore 巨 e viu ordinstuents dorcreto $\left(t_{1}=t_{2} \Rightarrow t_{1}=t_{2}\right)$
quindi cun a tene füte (di vu toble te ne cut)
Quind coupleto.
$\left.\cos \Sigma_{0}+t^{c}\right\}$ iningletok

Cab Eo now fingerove

$\Sigma_{0}=p$ e pm di ma etevents
mivilimale se Σ_{0} ta qua opict eturact.

$$
\frac{t_{i} \in T_{\Sigma}-1=1, m p p \in n}{f\left(t_{1}++w\right) \in \Sigma_{\Sigma}}
$$

Eserciaio 3
a) $\frac{t_{1}: \sigma \rightarrow T_{1}+t_{2}: t \rightarrow T_{2}}{\left\langle t_{1}, t_{2}\right\rangle: \nabla \rightarrow \tau_{1} * \tau_{2}}$
b) $\quad\left\langle t_{1}, t_{2}\right\rangle \rightarrow \lambda x: \sigma \cdot\left(\left(t_{1} x\right),\left(t_{2} x\right)\right) \quad x \notin F V\left(t_{1}, t_{2}\right)$
c) $\left[t_{1}+t_{2}\right] \rho=\left\lfloor d d \in\left(V_{0}\right) \cdot L(\operatorname{let} \varphi \in \pi+1] \rho \cdot \varphi d ;\right.$ eet $\left.\varphi \in \operatorname{tF}_{2} \Pi \cdot \varphi d\right]$
a)

$$
\begin{aligned}
& \left(\left\langle t_{1}, t_{2}\right\rangle t\right) \quad\left(\left(t_{1}+\right),\left(t_{2} t\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \bar{T}_{1} * \tau_{2} \\
& F_{1} * T_{2}
\end{aligned}
$$

b) oporavanale

$$
\begin{aligned}
& \left(\left\langle t_{1}, r_{2}\right\rangle t\right) \rightarrow c \leftarrow\left\langle t_{1} t_{2}\right\rangle \rightarrow d x \cdot t^{\prime}+[t / x] \rightarrow c \in \\
& \left(t_{1}, x_{1}\left(r_{2} x\right)-t / x\right] \rightarrow c+\left(t_{1}+\right)_{1}\left(r_{2} t\right) \rightarrow c \quad o k
\end{aligned}
$$

denotazanele

$$
\begin{aligned}
& \left.\left[\left(\left\langle r_{1}, t_{2}\right\rangle t\right)\right] \rho=\operatorname{let} \Phi\right) \leqslant[\lambda d \cdot L(\operatorname{let} \varphi \leqslant \pi t,] \rho, \varphi d, \\
& \left.\operatorname{let} \varphi=[t] \rho \cdot \varphi^{\prime} d\right] \cdot Q(4+\square \rho) \\
& \left.\left.=L\left(\operatorname{let} \varphi \notin \pi t_{1}\right] P \cdot \varphi(\pi+\| P), \operatorname{let} \varphi \in \pi t_{2} \| P \cdot \varphi(\pi+\pi \rho)\right)\right] \\
& =\left[\left[\left((t, N),\left(t_{2} t\right)\right)\right]\right.
\end{aligned}
$$

Exercise 4

$$
\begin{aligned}
& [\mu x \cdot(p \wedge \square x) v(\neg p \wedge \nabla x))] p= \\
& =f i x \lambda s \cdot\left(p p \cap\left\{v \mid \forall v^{\prime}, v \rightarrow v^{\prime}, v^{\prime} \in s\right)\right. \\
& \cup\left(\neg p p \cap\left\{v \mid \exists v^{\prime} \cdot v \rightarrow v^{\prime}, v^{\prime} \in s\right)\right. \\
& \sigma_{0}=\phi \\
& S_{1}=\{4\} \cap\{2,4\} \cup\{1,2,3\} \cap \phi=\{4\} \\
& S_{2}=\{4\} \cap\{2,3,4\} \cup\{1,2,3\} \cap\{3\}=\{3,4\} \\
& S_{3}=\{4\} \cap\{2,3,4\} \cup\{1,2,3\} \cap\{1,3\}=[1,3,4\} \\
& S_{4}=\{4\} \cap\{2,3\} \cup\{1,2,3\} \cap\{1,3\}=\{1,3,4\}=s_{3}=f i x
\end{aligned}
$$

Exercise 5

Agent P_{1} au extrude new neume y_{1}, y_{2}, \ldots and create comespondingagents

$$
Q_{1}=!\left(\bar{x} y_{1}, m i l\right), Q_{2}=!(\bar{x} y, m l), \cdots
$$

which are able to conevunicares on cheukelse. an under of times the new names $y_{1}, y_{2}, \mathrm{~m}$.
Agent P_{2} is able to receive (any umber of timers) on x pairs of such new names, and to create messages $\bar{g}_{i} y_{j} . n i l$, which can be suit on channel d y_{i}.

$$
\begin{aligned}
& \left.(x) P_{1} \mid P_{2}\right) \xrightarrow{\bar{z}\left(g_{1}\right)}(x)\left(P_{1}\left|P_{2}\right| Q_{1}\right) \xrightarrow{\bar{z}\left(y_{2}\right)}(x)\left(P_{1}\left|P_{2}\right| Q_{1} \mid P_{2}\right) \\
& \stackrel{\bar{z}\left(g_{2}\right)}{ }(x)\left(P_{1}\left|P_{2}\right| Q_{1}\left|Q_{2}\right| Q_{3}\right) \xrightarrow{\tau}(x)\left(P_{1}\left|P_{2}\right| Q_{1}\left|Q_{2}\right| Q_{3} \mid x\left(y^{\prime}\right) y_{1} y^{\prime} m L\right) \\
& \xrightarrow{T}(x)\left|y_{1} P_{2}\right| 0_{1}\left|a_{2}\right| Q_{3}\left|y_{1} y_{1}, m i l\right|
\end{aligned}
$$

$$
\begin{aligned}
& \bar{y}_{0} y_{1} \text { mil } / \bar{y}_{3} y_{2} \cdot \operatorname{mos} / \bar{y}_{3} y_{3} \cdot \text { enl }=P^{\prime}
\end{aligned}
$$

