Models of Computation

Written Examination on July 16, 2013

(First part: Exercises 1 and 2, 90 minutes Second part: Exercises 3, 4 and 5, 90 minutes)
Exercise 1 (8) (Previous TSD students: Exercises 1, 2 and 3, 120 minutes)
Extend $I M P$ with a recursion command $c::=\ldots|X| \operatorname{rec} X . c$, redefining memories as $\Sigma^{\prime}=L o c \rightarrow\left(N \cup\left(\Sigma \rightarrow \Sigma_{\perp}\right)\right)$. The denotational semantics of the new command is defined as follows;

$$
\mathcal{C} \llbracket X \rrbracket \sigma=(\sigma(X)) \sigma \quad \mathcal{C} \llbracket \operatorname{rec} X . c \rrbracket=\mathrm{fix} \lambda \varphi \cdot \lambda \sigma \cdot \mathcal{C} \llbracket c \rrbracket \sigma[\varphi / X] .
$$

(i) Define the inference rule for (closed) commands rec X.c. (Hint: analogous to the operational semantics of recursion in HOFL); (ii) state, without proof, the substitution lemma for extended IMP; (iii) prove the completeness of the denotational semantics of the new construct; and (iv) given the repeat command with denotational semantics:

$$
\mathcal{C} \llbracket \text { repeat } c \text { until } b \rrbracket=\text { fix } \Gamma \quad \Gamma \varphi \sigma=\mathbf{B} \llbracket b \rrbracket^{*}(\mathbf{C} \llbracket c \rrbracket \sigma) \rightarrow \quad \varphi^{*}(\mathbf{C} \llbracket c \rrbracket \sigma), \mathbf{C} \llbracket c \rrbracket \sigma
$$

define an equivalent command using the rec and if then else constructs and prove that it has the same denotational semantics.

Exercise 2 (7)

Consider the inference system R corresponding to the rules of the grammar (with $V=\{a, b\}$):

$$
A::=a A a|B \quad B::=b B| b
$$

where the well formed formulas are of the form $\alpha \in A$ (resp. $\alpha \in B$), with the meaning that string α belongs to the language generated by the nonterminal A (resp. B). Write down explicitly the rules in R.

Prove by rule induction - in one direction - and by mathematical induction on n, m - in the other direction - that the strings L_{A} generated by A (resp. L_{B} by B) are all the strings of the form $a^{n} b^{m} a^{n}\left(\right.$ resp $\left.b^{m}\right), m, n \in \omega, m \geq 1$. Finally prove by induction on derivations that the lenght of the derivation of $a^{n} b^{m} a^{n} \in A$ is $n+m+1$ (resp. the derivation of $b^{m} \in B$ is m).

Exercise 3 (5)

Consider the closed HOFL term $t^{\prime}=\mathbf{r e c} x . t$: int. Prove that if $\llbracket \lambda x . t \rrbracket \rho$ is not a constant, then $\llbracket t^{\prime} \rrbracket \rho=\perp_{N \perp}$ (Hint: $\llbracket \lambda x . t \rrbracket$ must be monotone, thus if it not a constant function its value on $\perp_{N \perp}$ must be $\perp_{N \perp}$). Give examples of t such that $\llbracket \lambda x . t \rrbracket \rho$, with $x \in f v(t)$, is a constant.

Exercise 4 (5)

Prove that in the π-calculus if $p \xrightarrow{\alpha} q$ then also $p \rho \xrightarrow{\alpha \rho} q \rho$ for any substitution ρ on the free names of p which does not capture the bound names of α. Also, show that $p \rho \xrightarrow{\alpha \rho} q \rho$ implies $p \xrightarrow{\alpha} q$ for any injective substitution ρ, while $p \rho \xrightarrow{\alpha \rho} q \rho$ does not imply $p \xrightarrow{\alpha} q$ when ρ is a noninjective substitution. (Hint: consider the counterexample which proves that ground bisimilarity is not a congruence.)

Exercise 5 (5)

A probabilistic system has four possible states, idle, working slow, working fast and failure. From idle, the system can move with probability p to working slow and with probability $1-p$ to working fast, where $0 \leq p \leq 1$ is a parameter. From working fast, the system returns to idle with 80% probability and otherwise moves to failure, while from working slow, the system returns to $i d l e$ with 95% probability and otherwise moves to failure. Finally, from failure the system moves with 50% probabiity to idle, or otherwise remains in the same state. Define the DTMC corresponding to the description above, observe that the chain is ergodic, and compute the stationary probabilities in terms of the parameter p. Finally, assuming that the gain for state working fast is 2 and for working slow is 1 (0 for the other states), compute the total gain in terms of p and determine the best value of p.

Writtan Examikeition MOD-JJly 16, 2013

Exercise 1

$$
\begin{aligned}
& \text { (i) } \frac{x \operatorname{coc} x \cdot C / X], \sigma\rangle \rightarrow \sigma^{\prime}}{\langle\operatorname{tec} x \cdot c, \sigma\rangle \rightarrow \sigma^{\prime}} \\
& G\left[r e c x \cdot c \mathbb{\|}=f \times x \operatorname{lo} \cdot r^{\prime} \cdot \varphi\|\subset\| \sigma[\varphi / x]\right. \\
& q\|x\| 0=\sigma(x)
\end{aligned}
$$

$$
\begin{aligned}
& \text { QUC }[\text { eex } x \cdot c / X] \Pi \nabla=G^{\prime} \text { by He prevuise }
\end{aligned}
$$

(ii) Subshiretion Leminer

wehave $G\left[c\left[c^{\prime} / x\right] \| \sigma=\zeta\left[c \| \sigma\left[G\left[c^{\prime} \| \sigma / x\right]\right.\right.\right.$
(iv) rec $X, c ;$ fibthaw X elcossip $=c^{\prime} \quad X \in \ln (c)$

$$
\begin{aligned}
& b[\| \text { repeat c luatic } b]=f \times \Gamma
\end{aligned}
$$

Since $r^{\prime}=r$ Hen $f \times r^{\prime}=f \times r$ QRO,

Bxerciser ${ }^{2}$

$$
\begin{aligned}
& \frac{2 \in A}{a+a \in A} \quad \frac{\alpha \in B}{d \in A} \quad \frac{\lambda \in B}{b \in B} \quad b \in B \\
& P(n \in A) \stackrel{d_{2} t}{\Longrightarrow} \exists n, m \cdot \alpha=a^{m} b^{m} a^{n} \\
& P(\alpha \in R) \stackrel{d y}{=} \sqrt{m} . \alpha=b^{m} \\
& \alpha \in A \quad \quad 0=a^{n} b_{n+1}^{m} a^{n} \\
& \frac{x \in A}{a X a \in A} \quad a \alpha_{a}=a^{n+1} b^{m} a^{n+1} \quad \text { arD } . \\
& \begin{aligned}
& \alpha \in B \alpha \\
& \frac{\alpha}{}=b^{m} \\
& \lambda \in A \lambda
\end{aligned}=a^{0} b^{m} a l \\
& \alpha=a^{0} b^{m} a^{0} \quad a E D . \\
& \begin{array}{ll}
\frac{\lambda \in B}{b x \in B} & \alpha=5^{m} \\
b x & =b^{m+1}
\end{array} \\
& b \in B \quad b=b^{1} \\
& u^{4} D
\end{aligned}
$$

$$
L_{A}=\left\{a^{n} b^{m} a^{n} \mid n \geqslant 0 m \geqslant 1\right\} \quad L_{B}=\left\{b^{m} \mid m \geqslant 1\right\}
$$

- $b^{1} \in B$ is atheoreve? bEB QED.
- Assuure $b^{n} G B \cdot b^{n+1} \in B$? $\frac{b^{n} \in B}{b a^{n} \in B}$ is a rute $Q E D$.
- Assume $b^{n} \in B \cdot a^{0} b^{n} a \in A$? $\frac{b^{n} \in B}{a^{0} b^{n} a^{0} \in A} \quad Q^{B D}$
- Assuuce $a^{n} b^{m} a^{n} \in A \cdot a^{n+1} b^{m} a^{n} \in A$? $\frac{a^{n} b^{m} a^{n} \in A}{a^{n+1} b^{n} a^{n+1} E A}$ QED.

Inductide anderivahious

$$
\begin{aligned}
& P\left(d / a^{n} b^{m} a^{m} \in L\right)=\frac{d g}{=} n+m+1 \\
& \frac{a^{n} b^{m} a^{n}}{a^{m+1} b^{m} a^{n+1}} \\
& P\left(d / a^{n} b^{m} a^{n} / a^{n+1} b^{m} a^{n+1}\right)= \\
& P\left(d / a^{n} a^{m} a^{n}\right)+1=(m+1+1)+1 \\
& =m+(n+1)+1 \quad \text { QED } \\
& \frac{b^{m} \in B}{a^{0} b^{m} a^{0} \in A} \\
& P\left(d / b^{m} / a^{0} b^{m} a^{0}\right)= \\
& P\left(d / b^{m}\right)+1=m+4=(m+0)+1 \text { QEA } \\
& \frac{b^{m} \in B}{b^{m+1} G B} \\
& P\left(d / b^{m} / b^{m+1}\right)= \\
& P\left(d / b^{m}\right)+1=m+1 \\
& \text { QED } \\
& b \in B \quad P(\phi / b)=1 \\
& A \equiv D
\end{aligned}
$$

Exercite 3

- If [ix. TI Ie is net a constant, thee

$$
\left[\pi x \cdot H \mathbb{H} I_{N_{1}}=1_{N_{1}}\right.
$$

Infarct, Uतix.I IP is a monotone (continues)

Thew $\|\| d x . \mid] \rho L_{H}=x$ wilt $x \equiv L h \mid$ and $\left.x E L K\right]$

$$
\text { lie } x=+N 1
$$

- $[\operatorname{rec} x . t \| \rho=f \cdot x d d . \operatorname{Ir} \mid \rho[d / x]$

$$
\begin{aligned}
& d_{0}=\perp_{N_{1}} \\
& d_{1}=\lambda d_{1}\left[\mid H P[d / x]=\llbracket d x \cdot H \rrbracket p \perp_{N_{1}}=\perp_{N_{1}}\right.
\end{aligned}
$$

QED.

- Case analyst:
op hasa natural extension \Rightarrow on borrow evaluates 101
 to but not to t, and $t_{2} \lambda_{x}$. Yo there O bise is constant and symmerreetly $\left(t_{1} t_{2}\right)$ hes a nalmual externs on ant but not out t_{2}
$(((d x .3) x)$ is constant
ix. + cannot have type int

Exercise 4

- $p \stackrel{\alpha}{\rightarrow} q \Rightarrow \vec{p} \xrightarrow{\alpha p} q p$

Giver a preof of $p \rightarrow 9$, iti potible to derive a prot of $p p \rightarrow$ op sy applyivg subshituhow P ouble free names of P. Noince tlet bound neacues of α camot be Gree names of p and thas are not involved in tis subssitinian, but subshtutions captoring the ne
$\therefore p p \rightarrow p p \Rightarrow p \rightarrow q$
If p isinjective Fan we have $p^{-p^{-1}=i d .}$ Thas we care afply the previousresuet with $p-1$

- If Pir not injechive, we have be countexample: given $p=\left(x^{\prime}(y), \omega \alpha\right) \mid \bar{x} x$, we we have $P\left[x / x^{\prime}\right] \xrightarrow{\tau} m x / m x$ whiter $p \underset{7}{7}$.

Exerate 5

0.8

$$
\text { Derivahue gobaik: } \frac{-1}{2.4-0.3 p}-\frac{2-p}{(2.4-0.3 p)^{2}} \cdot(-0.3)
$$

$$
=\frac{-1.8}{(2.4-0.3 p)^{2}} \text { alwags negahwe max } \quad \begin{gathered}
2.4-0,3 p \text { aik for } p=0 \text { fas } k
\end{gathered}
$$

$$
\begin{aligned}
& i=\quad 0.955+0.8 f+0.5 k \\
& s=p_{i} \\
& f=(p-p) i \\
& K=\quad 0.05 s+0.2 f+0.5 k \\
& i+s+i+k=1 \\
& K=0.15+0.4 f=(0.1 p+0.4(1-p)) \dot{i}=(0.4-0.3 p) \dot{i} \\
& (1+\not p+1-\not p+0.4-0.3 p) i=1 \\
& i=\frac{1}{2.4-0.3 p} \quad s=\frac{p}{2.4-Q .3 p} \\
& f=\frac{1-p}{2.4-0.3 p} \quad K=\frac{0.4-0.3 p}{2.4-0.3 p} \\
& \text { Gain }=\frac{p+2(1-p)}{2.4-0.3 p}=\frac{2-p}{2.4-4.3 p} \\
& P=0 \text { (fast) } \quad G a i n=\frac{2}{2.4}=0833 \\
& p=1 \text { (sbw) Gain }=\frac{2.4}{2.1}=0.446
\end{aligned}
$$

