Models of Computation

Written Examination on June 27, 2013

(First part: Exercises 1 and 2, 90 minutes
Second part: Exercises 3, 4 and 5, 90 minutes)
(Previous TSD students: Exercises 1, 2 and 3, 120 minutes)

Exercise 1 (8)

Define the small step semantics of IMP commands as an inference system with well formed formulas of the form $\langle C, \sigma\rangle \Rightarrow\left\langle C^{\prime}, \sigma^{\prime}\right\rangle$, where C and C^{\prime} are (possibly empty) sequences $c_{0} ; c_{1} ; \ldots ; c_{n}$ of commands, and with the following inference rules:

$$
\begin{array}{ccc}
\frac{\langle a, \sigma\rangle \rightarrow n}{\langle s k i p ; C, \sigma\rangle \Rightarrow\langle C, \sigma\rangle} \frac{}{\langle(x:=a) ; C, \sigma\rangle \Rightarrow\langle C, \sigma[n / x]\rangle} \quad \overline{\left\langle\left(c_{0} ; c_{1}\right) ; C, \sigma\right\rangle \Rightarrow\left\langle c_{0} ; c_{1} ; C, \sigma\right\rangle} \\
\langle b, \sigma\rangle \rightarrow \text { true } & \langle b, \sigma\rangle \rightarrow \text { false } \\
\overline{\left\langle\left(\text { if } b \text { then } c_{0} \text { else } c_{1}\right) ; C, \sigma\right\rangle \Rightarrow\left\langle c_{0} ; C, \sigma\right\rangle} \quad \overline{\left\langle\left(\text { if } b \text { then } c_{0} \text { else } c_{1}\right) ; C, \sigma\right\rangle \Rightarrow\left\langle c_{1} ; C, \sigma\right\rangle} \\
\overline{\langle(\text { while } b \text { do } c) ; C, \sigma\rangle \Rightarrow\langle c ;(\text { while } b \text { do } c) ; C, \sigma\rangle} \quad \frac{\langle b, \sigma\rangle \rightarrow \text { false }}{\langle(\text { while } b \text { do } c) ; C, \sigma\rangle \Rightarrow\langle C, \sigma\rangle}
\end{array}
$$

Prove by rule induction (but only for the assignment and the complex while rules) that the new semantics is deterministic, namely $\langle C, \sigma\rangle \Rightarrow\left\langle C^{\prime}, \sigma^{\prime}\right\rangle$ and $\langle C, \sigma\rangle \Rightarrow\left\langle C^{\prime \prime}, \sigma^{\prime \prime}\right\rangle$ implies $C^{\prime}=C^{\prime \prime}$ and $\sigma^{\prime}=\sigma^{\prime \prime}$. Then prove (for all rules) that $\langle c, \sigma\rangle \rightarrow \sigma^{\prime}$ implies, for all command sequences C, that $\langle c ; C, \sigma\rangle \Rightarrow^{+}\left\langle C, \sigma^{\prime}\right\rangle$, where $\langle c, \sigma\rangle \rightarrow \sigma^{\prime}$ is the ordinary semantics of IMP and where \Rightarrow^{+}is the transitive closure of \Rightarrow.

Exercise 2 (7)

Consider the languages of finite and infinite strings of natural numbers $L \subseteq \omega^{*} \cup \omega^{\infty}$, ordered by inclusion, with the condition that $\alpha \beta \in L$ implies $\alpha \in L$, and $\alpha n \in L \wedge m<n$ implies $\alpha m \in L$ where as usual $\alpha \in \omega^{\infty}$ implies $\alpha \beta=\alpha$. Prove that such languages form a complete partial ordering with \perp. Finally, explain why such languages actually represent finite and infinite, finite- and infinitebranching, ordered trees.

Exercise 3 (5)

Determine the type, the canonical form and the Γ such that $\llbracket t \rrbracket \rho=$ fix Γ for the HOFL agent $t=\operatorname{rec} F . \lambda f$. λx. if $f s t(x)-\operatorname{snd}(x)$ then x else $((F f) x)$.

Exercise 4 (5)

Consider the (infinite) transition system consisting of all the pairs (n, m) of natural numbers, where $(n+1, m) \rightarrow(n, m)$ and $(n, m+1) \rightarrow(n, m)$. Consider the μ-calculus formula $\mu x . p \vee \square x$, give its denotational semantics and compute its approximations on the transition system above assuming that p holds on $(0, n)$ and on $(n, 0)$ for all n. Finally, give the denotational semantics and the fixpoint for $\mu x . p \wedge \square x, \nu x . p \wedge \diamond x, \nu x \cdot p \wedge \square x$ on the same transition system.

Exercise 5 (5)

Alice wants to throw a snowball to Bob. The actions of A are: c and the corresponding rate λ_{c} for centering him; and $\left(m, \lambda_{m}\right)$ for missing him. B, instead, can hide with $\left(h, \lambda_{h}\right)$, and be hit with (c, ∞). Define a PEPA program $A \bowtie_{c} B$ and draw its (labelled) CTMC. Then build a (unlabelled) DTMC by normalizing to a sum of 1 all the outgoing rates of a process. Conclude observing the probability for Alice to hit Bob.

MOD-Writan xaminalion-June 2\%
2013
Exercise 1

$$
P\left(\langle C, \sigma\rangle \rightarrow\left\langle C_{1}^{\prime} \sigma^{\prime}\right\rangle\right) \stackrel{d d}{=}\left\langle C^{\prime}, \sigma^{\prime}\right\rangle \rightarrow\left\langle C^{\prime \prime}, \sigma^{\prime \prime}\right\rangle \Rightarrow C^{\prime}=C^{\prime \prime} \text { and } \sigma^{\prime}=\sigma^{\prime \prime}
$$

rote induction au the new semantic \rangle

$$
\bar{a}, C_{0}, C_{i}
$$

$$
\begin{aligned}
& P(\langle s k ; p ;\langle, \sigma\rangle \Rightarrow\langle\zeta, \sigma\rangle) \stackrel{d 4}{=}\langle s \kappa ; p ; \zeta, \sigma\rangle \Rightarrow\langle c, \sigma\rangle \\
& \Rightarrow C=C^{\prime \prime} r=\sigma^{\prime \prime}
\end{aligned}
$$

obvious, He rut applies

$$
: \frac{\langle a, \overline{,}\rangle \rightarrow n}{\langle(n:=a) ;(\rangle) \Rightarrow\langle c, \sqrt{5}[n]\rangle}
$$

$$
\begin{aligned}
& \left.\langle(x:=a) ; C, \sigma\rangle \Rightarrow\left\langle C^{\prime \prime}, \sigma^{\prime \prime}\right\rangle\right) \Rightarrow C^{\prime \prime}=C \sigma^{\prime \prime}=\left[\sigma^{\circ} x\right]
\end{aligned}
$$

Let us assume The premise
$\langle(x:=a) ; \zeta, \sigma\rangle \Rightarrow\left\langle C^{\prime \prime}, \sigma^{\dagger}\right\rangle$ by goal reduction we get $\langle a, r\rangle n^{\prime}$
\qquad but we know $n^{\prime}=n$ for aritumeticexpiestions thus $\sigma^{\prime \prime}=\sigma[n / 2]$ Q. $\sigma_{\text {D }} D$

- $\overline{\left\langle\left(\omega_{0} C_{1}\right) ; C, \sigma\right\rangle \Rightarrow\left\langle C_{0} ; C_{i} ; C, \sigma\right\rangle}$

$$
\begin{aligned}
& \Rightarrow C^{\prime}=C_{0} C_{i j} C, \quad \sigma^{\prime}=\sigma \\
& \left\langle\left(\sigma_{0} ; c_{1}\right) ; C, \sigma\right\rangle \Rightarrow\left\langle C^{\prime} \sigma^{\prime}\right\rangle \frac{C^{\prime}\left(c_{0} j_{i} ; C\right.}{\stackrel{\sigma^{\prime}=\sigma}{\sigma}} \square \quad Q \in D
\end{aligned}
$$

- $\langle b, \sigma\rangle \rightarrow t r u e$

$$
\left.\left\langle\prod_{\text {b hen }} C_{0} l d e C_{1}\right) ; C, \sigma\right\rangle \rightarrow\left\langle C_{0} ; C, \sigma\right\rangle
$$

$P\left(\left\langle\left(f\right.\right.\right.$ b Hen coelsc$\left.\left.\left.c_{1}\right) ; \zeta, \sigma\right\rangle \rightarrow\langle 6 ; c, \sigma\rangle\right)$ de
(f other co of te $\left.\left.C_{1}\right) ; C, \sigma\right\rangle \rightarrow\left\langle C^{\prime} \sigma^{\prime}\right\rangle \Rightarrow \sigma_{0} ;\left(=C^{\prime}, \sigma=\sigma^{\prime}\right.$
$\left\langle\left(i, b\right.\right.$ Hew c. els c) ; $\langle, \sigma\rangle \rightarrow\left\langle C^{\prime}, \sigma^{\prime}\right\rangle \frac{c^{\prime}=\sigma_{0} i c}{\sigma=\sigma^{\prime}}\langle b, \sigma\rangle \rightarrow$ true which is true by He premise

$$
\left\langle(\text { white } b \text { doc }) ;\langle\bar{\sigma}\rangle \rightarrow\left\langle c_{1}^{\prime},\right\rangle \frac{c^{\prime}=c ;(\text { while } b d o c) ; c i}{\sigma^{\prime}=\sigma}\langle b, \sigma\rangle \rightarrow\right. \text { rue }
$$ which is true

- $\langle b\rangle$,$\rangle false$ by the premise CD
$P(\langle($ white be do $C) ; C, \sigma\rangle \rightarrow\langle C, \sigma\rangle) \stackrel{d d}{=}$
$\left\langle(\right.$ while $b d o c) ;\langle, \sigma\rangle \rightarrow\left\langle c^{\prime}, \sigma^{\prime}\right\rangle \Rightarrow c=c^{\prime} \sigma=\sigma^{\prime}$

which is true by the piemite OED
Equivalence of the two semantics (one direction)

$$
P\left(\langle C, \sigma\rangle \rightarrow \sigma^{\prime}\right) \stackrel{\text { dat }}{=}\langle c ; C, \sigma\rangle \Rightarrow\left\langle\sigma, \sigma^{\prime}\right\rangle
$$

rule induction an the old semantics

- $\frac{-}{\left\langle s K_{i}, \sigma\right\rangle \rightarrow \sigma} \quad P\left(\left\langle s K_{i}, \sigma\right\rangle \rightarrow \sigma\right) \stackrel{\text { def }}{=}\left\langle s k_{i p} ;(, \sigma\rangle \Rightarrow\langle C, \sigma\rangle\right.$
correct forme the \Rightarrow ide.

$$
\begin{aligned}
& \frac{\langle a, \sigma\rangle \rightarrow n}{\langle x:=a, \sigma\rangle \rightarrow \sigma[n / x]} \\
& P(\langle x:=a, \sigma\rangle \rightarrow \sigma[n / x])\langle(x:=a) ; c, \sigma\rangle \Rightarrow\langle c, \sigma[n / x]\rangle
\end{aligned}
$$

cornectfrom tie \Rightarrow role with the same premise

$$
\begin{aligned}
& 0 \frac{\langle b, \sigma\rangle \rightarrow \text { true }}{\langle(\text { while } b \text { do } c) ; b, \sigma\rangle \rightarrow\langle c ;(\text { whit bloc); } c, \sigma\rangle} \\
& P(\langle(\text { while } b \text { do } c) ; C, \sigma\rangle \rightarrow\langle C ; \text { (white } b \text { doc }) ; C, \sigma\rangle) \text { dot } \\
& \left.\langle(\text { while } b \text { doc }) ; C, \sigma\rangle \rightarrow\left\langle C^{\prime}, \sigma^{\prime}\right\rangle \Rightarrow C^{\prime}=c \text {; (whit b } b o c\right) ; C, \sigma^{\prime}=\sigma
\end{aligned}
$$

- $\frac{\left\langle c_{0}, \sigma\right\rangle \rightarrow \sigma^{\prime \prime}\left\langle c_{1}, \sigma^{\prime \prime}\right\rangle \rightarrow \sigma^{\prime}}{\left\langle c_{0} ; c_{1}, \sigma\right\rangle \rightarrow \sigma^{\prime}}$

Induction properties

$$
\begin{aligned}
& \left.P\left(\left\langle c_{0}, \sigma\right\rangle \rightarrow \sigma^{\prime \prime}\right) \frac{\operatorname{dot}}{}\left\langle C_{0} ; C^{\prime}, \sigma\right\rangle \Rightarrow+C^{\prime} \sigma^{\prime \prime}\right\rangle \\
& P\left(\left\langle C_{1}, \sigma^{\prime \prime} \rightarrow \sigma^{\prime}\right) \stackrel{\operatorname{det}}{\Rightarrow}\left\langle C_{1} ; C^{\prime \prime}, \sigma^{\prime \prime}\right\rangle \Rightarrow+, C^{\prime \prime} \sigma^{\prime}\right\rangle
\end{aligned}
$$

To prove

$$
\left.\left.P\left(C_{0}, C_{1}, \sigma\right\rangle \rightarrow \sigma^{\prime}\right) \stackrel{d}{=}\left\langle C_{0} ; C_{1} ; C, \sigma\right\rangle \Rightarrow{ }^{+}, C, \sigma^{\prime}\right\rangle
$$

For every C, we assume $C^{\prime}=C_{1} ; C$ and $C^{\prime \prime}=C$. We get

$$
\left\langle C_{0} ; C_{1} ; C, \sigma\right\rangle \Rightarrow{ }^{*}\left\langle C_{1} ; C, \sigma^{\prime \prime}\right\rangle \Rightarrow^{+}\left\langle C_{1} \sigma^{\prime}\right\rangle \quad Q E D .
$$

- $\frac{\langle b, \sigma\rangle \rightarrow \text { true }\left\langle c_{0}, \sigma\right\rangle \rightarrow \sigma^{\prime}}{\left.\text { ifbthen co eide } c_{1}, \nabla\right\rangle \rightarrow \sigma^{\prime}}$

Induction property.

$$
\left.P\left(\left\langle c_{0}, \sigma\right\rangle \rightarrow \sigma^{\prime}\right) \stackrel{d f}{=}\left\langle c_{0} ; c_{1}^{\prime},\right\rangle \Rightarrow{ }^{+} c^{\prime}, \sigma^{\prime}\right\rangle
$$

To prove
$P\left(\left\langle i f\right.\right.$ b Hew coesse $\left.\left.C_{1}, \sigma\right\rangle \rightarrow \sigma^{\prime}\right) \stackrel{d \&}{=}\left\langle\left(\mid \sigma\right.\right.$ btheuc c_{n} else $\left.\left.c_{1}\right) ; C, \sigma\right\rangle \rightarrow\left\langle C, \sigma^{\prime}\right\rangle$
$\left\langle\left(f b\right.\right.$ then $\operatorname{coc}\left(\right.$ ie $\left.\left.c_{1}\right)\right)(\bar{\sigma}\rangle \rightarrow\langle\operatorname{coj} C, \Gamma\rangle \Rightarrow+\left\langle, \sigma^{\prime}\right\rangle$ ORD.
same premise, with $C^{\prime}=C$

- Similarly for TE other conditional rule
$0\langle b, \sigma\rangle \rightarrow$ True $\langle c, \sigma\rangle \rightarrow \sigma^{\prime \prime} \quad$ while bdoc, $\left.\sigma^{\prime \prime}\right\rangle \rightarrow \sigma^{\prime}$ $\left\langle\right.$ while b do $\langle, \tilde{\sigma}\rangle \rightarrow \sigma^{\prime}$
Induction properties:

$$
P\left(\langle C, \sigma\rangle \rightarrow \sigma^{\prime \prime}\right) \stackrel{d f}{=}\left\langle C ; C^{\prime}, \sigma\right\rangle \rightarrow^{+}\left\langle C^{\prime} \sigma^{\prime \prime}\right\rangle
$$

$P\left(\right.$ while b doc $\left.\left.c \sigma^{\prime \prime}\right\rangle \rightarrow \sigma^{\prime}\right) \stackrel{\text { deft }}{=}\langle$ (while b do $\left.c) ; C^{\prime \prime}, \sigma^{\prime \prime}\right\rangle \rightarrow{ }^{+}\left\langle c_{1}^{\prime \prime} \sigma^{\prime}\right\rangle$
To prove

$$
\begin{aligned}
& \left.P(\text { while } b d o c, \sigma\rangle \rightarrow \sigma^{\prime}\right) \stackrel{\text { dot }}{=}\langle(\text { while } b d o c) ; C, \sigma\rangle \rightarrow \rightarrow^{+}\left\langle C, \sigma^{\prime}\right\rangle \\
& \langle(\text { while } b d \sigma c) ; C, \sigma\rangle \rightarrow\left\langle\left(c^{\prime} \text { (while } b d o c\right) ; C, \sigma\right\rangle \\
& \quad+\left\langle(\text { whale } b d \sigma c) ; C, \sigma^{\prime \prime}\right\rangle \rightarrow{ }^{+}\langle C, \sigma\rangle
\end{aligned}
$$

sauce premise, $C^{\prime}=($ white b do $c) ; C^{\prime \prime} \quad C^{\prime \prime}=c$
$=\frac{\langle b, T \rightarrow \text { false }\rangle}{\langle\text { while } b \text { do } c, \sigma\rangle \rightarrow \sigma}$

$$
P(\langle\text { while } b \text { do } c, \sigma\rangle \rightarrow \sigma)^{\text {def }}\langle(\text { while } b \text { do } c) ; ~ c, \sigma\rangle \rightarrow\langle c, \sigma\rangle
$$

immediate from the role, seance premise.

Exercise 2

Being the structure the class of all the subsets of a Diver juive.k, $\omega^{*} U \omega^{\infty}$, with restrictions represented by veciversally quantified axioms $\forall \chi, \beta, \psi \beta \in L \Rightarrow \alpha \in L, \forall \chi, n, \alpha n \in L \Rightarrow \alpha m \in L, m<n$, ordered by inclusion, the stiveture is a parted ordering.
The empty set satisfies the axioms, aud thus it is the 1.
For the completeness, given a chain
$L_{1} \subseteq L_{2} \subseteq \ldots$ the limit $\cup L_{i} \in \omega=L$ exists as abet, but we must prove it satisfies the axioms.

$$
1 \beta \in U L_{i} \stackrel{?}{\Rightarrow} x \in U L_{i}
$$

$\alpha \beta \in U L_{i}$ implies $\exists K . \chi \beta \in L_{k}$, the $\alpha \in L_{k}, \alpha \in U L_{i}$. Similarly, $\alpha n \in U L_{i}, m<n \Rightarrow d m \in U L_{i}$.
In fact, $\alpha n \in U L_{i}$ uplies $\exists K, \alpha n \in L_{k}, \alpha m \in L_{k} \quad \alpha m \in U L_{i}$
The strings of a language L are the paths of a possibly infinite, infinite branding tree.
A finitepath α represents a node of te tree.
Its immediate descendents are all tie strings of the forme $L_{0}, 21, \ldots, 2 n, \ldots$ ordered according to n. This set cal be empty, but ten no $\alpha \beta$ exisisin L. The empty siring ε is the root.

Exercise 3

Exercise 4

$$
\begin{aligned}
& P=\{0,2,0,1 \in \omega) \\
& 0=\phi \\
& 11 \text { 11111 } \\
& a_{1}=0 \\
& \left.s_{2}=S_{1} \text { uf(} 1,1\right) \\
& S_{3}=S_{2} \cup\{(2,1,(1,2)\} \\
& S K=\{(n, m)(n+m=\pi\} \\
& \left.\bigcup_{K \in} S_{K}=\left(n_{m}\right) / m_{1}, m \in \omega\right)=V \\
& \because P A \square K]_{0}=f \times i S \cdot \rho p \cap\left\{\sigma \mid \forall v^{\prime}: \sigma \rightarrow \sigma^{\prime} \cdot S^{\prime} \in S\right\} \\
& \therefore_{0}=\phi \\
& s_{1}=1(0,0) \\
& S_{2}=S_{1} \cup\{(0,1),(1,0)\} \\
& U s_{k}=P
\end{aligned}
$$

$$
\begin{aligned}
& { }_{0}=V \\
& \left.S_{1}=P-\{0,0)\right\} \\
& S_{2}=-\{(0,1),(1,0)\} \\
& v_{i}=\phi \\
& 12345 \\
& 211111 \\
& \text { 31191 } \\
& \text { 51111 }
\end{aligned}
$$

$$
\begin{aligned}
& \circ= \\
& b_{4}=? \\
& x_{2}=e=f x
\end{aligned}
$$

Exarate 5

$$
\begin{aligned}
& A=\left(c, \lambda_{c}\right) \cdot \text { STOP }+\left(m, \lambda_{m}\right) \cdot \text { STOP } \\
& B=(c, \infty) \cdot S T O P+\left(h, \lambda_{h}\right) \cdot \text { STOP } \\
& S=A \infty_{c} B
\end{aligned}
$$

