Models of Computation

Written Exam on January 28, 2013

(MOD students: Exercises 1-5, 180 minutes Previous TSD students: Exercises 1-3, 120 minutes)

Exercise 1 (7)

Modify the denotational semantics of while as follows:

$$
\mathcal{C} \llbracket \text { while } b \text { do } c \rrbracket=f i x \Gamma \quad \Gamma \varphi \sigma=\mathcal{B} \llbracket b \rrbracket \sigma \rightarrow \varphi \sigma, \sigma .
$$

Prove that $\mathcal{C} \llbracket c \rrbracket \sigma=\sigma^{\prime} \Rightarrow\langle c, \sigma\rangle \rightarrow \sigma^{\prime}$ and show with a counterexample that $\langle c, \sigma\rangle \rightarrow \sigma^{\prime} \Rightarrow \mathcal{C} \llbracket c \rrbracket \sigma=\sigma^{\prime}$ does not hold.

Exercise 2 (7)

Consider the set $P I$ of partial injective functions from ω to ω, with the ordering \sqsubseteq explained in the course (inclusion of sets of pairs, namely $f \sqsubseteq g$ if $\operatorname{Gr}(f) \subseteq \operatorname{Gr}(g)$, with $\operatorname{Gr}(h)=\{<x, y>\mid h(x)=y\}$). If we identify a function f with its graph $G r(f)$, we have that f partial injective means $<x, y>,<x, y^{\prime}>\in f \Rightarrow y=y^{\prime}$ e $<x, y>,<x^{\prime}, y>\in f \Rightarrow x=x^{\prime}$. Prove that $(P I, \sqsubseteq)$ is a complete partial ordering. Finally, prove that function $F: P I \rightarrow P I$ with $F(f)=\{<2 x, y>\mid<x, y>\in f\}$ is monotone continuous.
(Hint: Consider F as computed by the immediate consequences operator \hat{R}, with R consisting only of the rule $<x, y>/<2 x, y>$.)

Exercise 3 (6)

Consider the following equation:

$$
\llbracket t \rrbracket \rho=\lfloor(\llbracket \text { first }(t) \rrbracket \rho, \llbracket \operatorname{snd}(t) \rrbracket \rho)\rfloor .
$$

Determine the type of t and the semantic domains all the subterms of the equation belong to, checking that the left and the right hand side of the equation belong to the same type. Then show with a counterexample that the equation does not hold. Finally, give necessary and sufficient conditions under which it holds.

Exercise 4 (5)

The terminating traces semantics (TT) of a CCS agent p, is the set of action sequences p can perform arriving at a quiescent state:

$$
\llbracket p \rrbracket=\left\{\mu_{1} \mu_{2} \ldots \mu_{n} \mid p \xrightarrow{\mu_{1}}{ }^{\mu_{2}} \ldots \xrightarrow{\mu_{n}} q \wedge q \nrightarrow\right\} .
$$

Prove that two bisimilar agents have the same TT semantics. Finally, considering the two agents $p=\alpha .(\beta . n i l+$ $\gamma . n i l)$ and $q=\alpha . \beta . n i l+\alpha . \gamma . n i l)$, and the context $C[]_{-}=(-\mid \bar{\alpha} \cdot \bar{\beta} . n i l) \backslash \alpha \backslash \beta \backslash \gamma$, prove that the TT semantics is not a congruence.

Exercise 5 (5)

In the notes, the CTMC notion of bisimilarity has been defined for unlabeled TSs, while PEPA TS is labeled. Extend the definition of bisimilarity to the labeled version.

Define two PEPA processes for the two TS in the figure above (assume all the transitions as decorated by the same label and disregard the self loop on E_{31} : why?) and compute iteratively the bisimilarity relation as the fixpoint of function Φ.

Conerione Scritto
Eserciरे 1

Poriano cilcolarc dirotanume blulfó

$$
\begin{aligned}
& \varphi_{0}=1 \\
& \varphi_{1}=T \varphi_{0}=d \sigma[B[b] \rightarrow 1, \sigma
\end{aligned}
$$

$$
\begin{aligned}
& =\text { ता } B \sqrt{5} \rightarrow+, \sigma=4_{1}=f x{ }^{2}
\end{aligned}
$$

$\left[4[\omega]=1+\sqrt{4}+4+\frac{4}{4}\right.$

Luine le pranerre dederepots

$$
\frac{k(v) \rightarrow \sqrt{n} \mid c}{(5, v) \rightarrow \sigma}
$$

sub fodelyde ex+i cUD
(w) while x कo de $x:=x-1=w$

Absianio

$$
\begin{aligned}
& \leftrightarrow\langle w,[1 / m\rfloor 1 / 4]\rangle \leq 0^{4}
\end{aligned}
$$

meutre

$$
6\left[(w][4 / x]=B\left[\left[^{x+0][1 / 2 \rightarrow 1,-1 / 0]=1}\right.\right.\right.
$$

Esercuajo
Propriers ifectiva: $1 \leq f$ owie eseende $f \subseteq f$

$$
f \subseteq g \in g \subset f \Rightarrow g=f
$$

Propricte tractiva $f E g g=L \Rightarrow f E L$ onio arrach

$$
f \subseteq g g \subseteq h \Rightarrow f \subseteq h
$$

GuppleteFta
Date vua barana
cow $\langle x, y\rangle,\langle x, y\rangle \in f i=y=y^{\prime}<\langle x, y\rangle,\langle x, y\rangle \in f i \Rightarrow x=x$
Brsofoc diuoslrare due audke le lub y paraiale inictiv:

Infats $f \quad\langle x, y \geqslant \Delta x y\rangle \in G$ athora edztemk coy $\langle x, y\rangle\langle x y\rangle E f$.
Dubut $y=$ es cheude fe paratate nuedina:

Da ulhwA $\hat{R}: P \left\lvert\, \rightarrow P I \operatorname{cow} R=\left\{\frac{\langle x, y\rangle}{\langle(2 x, y\rangle}\right\}\right.$
e conkiun avacho ritte te rejote ua whuer finto di premeve.
tis 3

fic $t=\operatorname{rec} x \cdot t_{1} * \tau_{2} x$
Guance $A T I P=$ fix $\lambda x \cdot x$

$$
\begin{aligned}
& x^{0}=1\left(\sqrt{1} x_{2} \tau_{2}\right) 1 \\
& x^{1}=(n x, x) 1=1=[1] p
\end{aligned}
$$

$$
\begin{aligned}
& L(\operatorname{ditsh}(H) \operatorname{HP}, \operatorname{tstat}(t) \| ?)=
\end{aligned}
$$

$$
\begin{aligned}
& 4\left(\frac{1}{\left.\left(T_{1}\right)_{1}\right)} \frac{\left.\left.1 V_{2}\right)_{1}\right)}{} \neq \frac{1}{\left.\left.\left(V_{1}\right)_{1} \times\left(V_{2}\right)_{1}\right)_{1}\right)}\right.
\end{aligned}
$$

Himan dede derivazioctupreceduede absesha

$$
\begin{aligned}
& L([\operatorname{Ton}=(-)][,[\operatorname{sun}(E)] p)]= \\
& =\left[\left(\left(\operatorname{lct} t \leqslant\left(v_{1}, v_{2}\right)\right) \cdot \pi \cdot v\right) \operatorname{let} v^{\prime} \leqslant\left\lfloor\left(v, v_{2}\right) \cdot, \pi_{2} \sigma\right)\right] \\
& =L\left(\left(\pi_{1}\left(v_{1}, v_{2}\right) \pi_{2}\left(v_{1}, v_{2}\right)\right)\left|=L\left(v_{1}, v_{2}\right)\right|=\| \underline{\|} \quad\right. \text { cvil. }
\end{aligned}
$$

Esteraizo 3

$$
\mu_{1} \mu_{n} \in[D] \quad \& \mu_{1}+\mu_{n} \notin \mathbb{T} D
$$

deg $\forall \mu, P \xrightarrow{\mu} P^{\prime}$ e $P \rightarrow$ e $q \nrightarrow q, g / \rightarrow$
 audato ue wiostato thiencente cou μ. Cuindi o Hicu viucetabto, se $9 \rightarrow$, oppure
 e Bob worpū njppudere cortpor
Pans in dechio
Vale $(*)$ e alofur dingtirany

Allora fince sceghe $p \rightarrow p^{\prime \mu}$ an $p^{\prime \mu} \mu_{2} \mu_{n+1} p^{\prime}$ ept p
 Quiudi o Alie vince fetift se $g \nRightarrow$ appure
 deto dertike tor una stigtefe vincentoper lipoteri udutiva (*) ,
$p^{\prime \prime} \mu_{2} \ldots \mu_{x+1} p$ ept e $q^{\mu_{\mu} \mu_{4} \rightarrow q_{m+1}} q^{\prime} e e^{\prime} p \Rightarrow p^{\prime \prime} q^{\prime \prime}$ con racua lenge w.

$$
\begin{aligned}
& \text { - } p=\alpha \cdot(\text { puct+ }, n c) \quad q=\alpha \beta, \omega C+\alpha j \omega l \\
& \Pi D U=22 \beta, 2+1=[9] \\
& c[P]=(\alpha(\beta u \mu+\gamma, n e) / \bar{\beta}, \bar{\beta})) \alpha+\beta+\gamma \\
& c[\sigma]=((\alpha \beta \mu+\alpha, \omega l)+\bar{\alpha} \beta l)+\beta \mid \gamma \\
& [C[P]]=\{\tau \tau\} \quad \mathbb{L}[Q]]=\{\tau, \tau \tau
\end{aligned}
$$

Esondo: $\mathbb{T P D = T Q U}$ me $[C[P]]+\pi C[Q]$
I-I usin e wia congroenta,

$$
r_{f}\left(s_{1}\right)=\sum \alpha s_{1}\left(s_{2}\right.
$$

-appareurlialé

$$
p=(x, 8) \operatorname{sip}
$$

$$
g=(2) \cdot p
$$

Cbel the semuc for all transtingy

$$
\Sigma_{30}=(0,2) 9+(0,2) 0
$$

$$
E_{3_{1}}=(0.4) 9
$$

$$
R=\left\{\left\{\left\{E_{30}, \pi_{31}, 9, P, 5 \operatorname{lop}\right\}\right\}\right.
$$

$$
R_{1}=\phi\left(A_{0}\right)=\left\{\left\{E_{30}, E_{P r}\right\},\{9\},\{P\},\{\operatorname{sig}\}\right\}
$$

bated act He apparotertè'

$$
R_{2}=R_{1}
$$

Sef boos are not mequanfal: bott the probabitity of tic eveut audirs nefetion couln bute to the sojour hive.

$$
\begin{aligned}
& 4: S \rightarrow L+x \rightarrow R^{\geq 0} \\
& \left\langle\dot{S}_{1} l_{s_{2}}=\Sigma\left\{\left\{\mid s_{1} \xrightarrow{\left(l_{1}\right)} \bar{S}_{2}\right\}\right.\right. \\
& s_{4} \phi(P) s_{2} \Rightarrow \forall Q I \in B_{1} \cdot d s_{1} l I=2 s_{2} l I \\
& \left.F_{30}=(0.2 \cdot 12) \cdot(0,1), \operatorname{siop}+(0.2) \cdot 2\right) \cdot(0.8) \cdot \operatorname{stop} \\
& B_{31}=(0.4) \cdot(2) \cdot(0.8) .510 p
\end{aligned}
$$

