Models of Computation

Written Exam on February 10, 2014

Exercise 1 (6)

Given the IMP command:

$$
\mathrm{w}=\text { while } x \neq 0 \text { do }(x:=x-1 ; y:=y+1)
$$

prove using Scott computational induction that, no matter what memories σ e σ^{\prime} are, we have:

$$
\mathcal{C} \llbracket w \rrbracket \sigma=\sigma^{\prime} \quad \Rightarrow \quad \sigma x \geq 0 \wedge \sigma^{\prime}=\sigma\left[{ }^{[x+\sigma y} / y,{ }^{0} / x\right]
$$

Exercise 2 (8)

Consider the set $\{\omega \times \omega\}$ of pairs of natural numbrs with the lexicographic ordering \sqsubseteq defined as

$$
\left(n_{1}, m_{1}\right) \sqsubseteq\left(n_{2}, m_{2}\right) \text { if } n_{1}<n_{2} \text { or if } n_{1}=n_{2} \text { and } m_{1} \leq m_{2}
$$

Prove that \sqsubseteq is a partial ordering with bottom. Then show that the chain $\{(0, k)\}_{k=0,1 \ldots}$ has lowest upper bound, but also exhibit a chain without lub. Moreover, consider the set $\{[N] \times \omega\}$ con $[N]=\{n \mid n \leq N\}$, with the same ordering, and then show, also in this case, a chain without lub. Finally, prove that $\{[N] \times(\omega \cup\{\infty\})\}$ with the same ordering, where $x \leq \infty$, is complete with bottom, and show a monotone, non continuous function on it.

Exercise 3 (6)

Redefine the operational semantics of multiplication in HOFL as follows:

$$
\frac{t_{1} \rightarrow n_{1} \quad t_{2} \rightarrow n_{2}}{t_{1} \times t_{2} \rightarrow n_{1} \times n_{2}} \quad \frac{t_{1} \rightarrow 0}{t_{1} \times t_{2} \rightarrow 0} .
$$

Prove by structural induction that also with the new definition multiplication is deterministic, namely $t_{1} \times t_{2} \rightarrow n$ and $t_{1} \times t_{2} \rightarrow n^{\prime}$ implies $n=n^{\prime}$. However observe that now for the (well typed) term $t=0 \times$ rec x. x it does not hold that $t \rightarrow c$ implies $\llbracket t \rrbracket \rho=\llbracket c \rrbracket \rho$.

Finally, redefine also the denotational semantics of multiplication and prove that $t_{1} \times t_{2} \rightarrow c$ implies $\llbracket t_{1} \times t_{2} \rrbracket \rho=$ $\llbracket c \rrbracket \rho$.

Exercise 4 (5)

Consider the CCS agents:

$$
p=\operatorname{rec} x . a b x+b a x \quad q=((\text { rec } x . a \bar{c} x) \mid \text { rec } x . b c x) \backslash c,
$$

compute all the states reachable from them in the weak transition system (\Rightarrow) and, using the iterative computation method for the fixpoint, partition the reachable states in the weak bisimilarity classes, observing that p and q turn out to be bisimilar. Finally, find for every class a formula of Hennessy Milner logic which holds for the elements of the given class and not for any other element.

Exercise 5 (5)

A given DTMC consists of states $S=\left\{p_{i}\right\}_{i=0, \ldots, n} \cup\left\{q_{i}\right\}_{i=1, \ldots, n-1}, n \geq 2$ and of transitions:
$p_{i} \xrightarrow{a_{i}} p_{i+1} \quad i=1, \ldots, n-1$
$p_{i} \xrightarrow{1-a_{i}} p_{i} \quad i=0, \ldots, n$
$p_{0} \xrightarrow{a_{0} / 2} p_{1}$
$p_{0} \xrightarrow{a_{0} / 2} q_{1}$
$p_{n} \xrightarrow{a_{n}} p_{0}$
$q_{i} \xrightarrow{a_{i}} q_{i+1} \quad i=1, \ldots, n-2$
$q_{i} \xrightarrow{1-a_{i}} q_{i} \quad i=1, \ldots, n-1$
$q_{n-1} \xrightarrow{a_{n-1}} p_{n}$.

Draw the DTMC, show for which parameter values the chain is ergodic, and prove that the relation $p_{i} \equiv q_{i} i=$ $1 \ldots n-1$ is a bisimulation. Finally, find the steady state probabilities of all the states of the reduced DTMC.
$\frac{\text { Correxione Santlo del 10/02/20/4 }}{\text { sercizio }}$
Esencizo

$$
P(\varphi) \stackrel{d g}{ } \varphi \sigma^{\prime} \Rightarrow \sigma^{\prime} \Rightarrow\left[x \geq 0 \wedge v^{\prime}=\pi\left[\sigma x+\sigma / g / \frac{q}{x}\right]\right.
$$

- Pe inclusivo:
$\left.\forall i \varphi_{i} r=r=0 x \geqslant 0 r^{\prime}=r^{[r x+r y} y, g x\right] \quad$ (A)
ruplice

$$
\frac{\left(4 \varphi_{i}\right) \nabla=r^{\prime}}{B} \Rightarrow\left[x \geqslant 0 \wedge=r^{\frac{1}{2} x+\sqrt{4} / 9}, 0 / 2\right]
$$

 Gllover $7 \pi \cdot \varphi_{k}{ }^{5}=v^{\prime}$ Quin dida (A) jobrodedune bateri. Whiluriacen tiudeczone discott:

$$
\begin{aligned}
& P\left(\frac{1}{2 \rightarrow \Sigma_{1}}\right) \wedge \forall \varphi \cdot P(\varphi) \Rightarrow P(\neg \varphi) \\
& p(f \times f) \\
& G \| w_{1}=f_{i x} r
\end{aligned}
$$

 Pala

- Arsencivacer p(甲)

$$
P(\varphi) \stackrel{d e f}{=} \varphi r^{\prime \prime}=\sigma \Rightarrow \sqrt{\prime} \Rightarrow \sqrt{x} \geqslant 0 \wedge \sigma^{\prime}-c^{\prime \prime}\left[r^{\prime} y / g / v\right]
$$

Dinostricum $P(P)$

$$
\begin{aligned}
& \Rightarrow \sigma x \geqslant 0 \quad A \sigma=6[6 x+5 y / 9,0 / x]
\end{aligned}
$$

Ayumiano la preluctste

$$
\begin{equation*}
\sigma x \neq 0 \rightarrow \varphi r[a x-/ x, y+1 / y], r=0 \tag{A}
\end{equation*}
$$

A applee lipotrì undertiva cer

$$
u^{\prime \prime}=0(6 x-1 / x, 5+1 / 7
$$

absianece

$$
\begin{align*}
& \pi \quad x \geqslant 0 \quad \text { a } 0<0 x-1 \geqslant 0 \quad-x \geqslant 1 \geqslant 0 \quad c \cup 0 \\
& \sigma^{\prime}=[5 x-1 / x, 5 y+1 / q][1 x-1+\sqrt{7}+1 / q, 0 / 2] \\
& =0[6 x+\pi / y] \quad 0 / x] \quad c v D \tag{3}
\end{align*}
$$

Esercioip 2
Propietanylem, $: ~(n, m) E(n, m)$ onio

$$
\Rightarrow n_{1}=n_{2}+m_{1}=m_{2} \text { oviva }
$$

Proprite thamuth! : $\left(m_{1}, m_{1}\right) \subseteq\left(m_{2}, m_{2}\right) \subset\left(m_{3}, m_{3}\right) \Rightarrow\left(n_{1}, m_{1}\right) \leq\left(u_{3}, m_{3}\right)$
Bengow: $(0,0) \leq(4, m)$ ouvio:
 de eimague der mappranat.
 pundi wemmens lus.

Athare (n, ∞) eitano bub, devo de bar agut N decte
 infícita. उe sodoun e e rveng, $(9,9)$.
Laflumivare $f(n, n)=0 \quad(1(n, \infty)=0$
Pémonolonáa a nouacoulvinka:

Eserevino 3

$$
P\left(t_{1} \times t_{2}\right) \stackrel{\text { def }}{=} t_{1} \times t_{2} \rightarrow c \quad t_{1} \times t-\rightarrow c^{\prime} \Rightarrow c=c
$$

Cave $+{ }_{1} \times t_{2} \rightarrow c \stackrel{c=c_{1} \times C_{2}}{c_{2}} \rightarrow c_{1} r_{2} \rightarrow c_{2} \ldots$

$$
A \quad t_{1} \times t_{2}^{2} \rightarrow c \in c_{1}^{\prime} \times c_{1}^{\prime} \quad t_{1}^{\prime} \rightarrow c_{1}^{\prime} \quad f_{2} \rightarrow c_{2} \cdots
$$

Abhiauo $c_{1}=c_{1}^{\prime} e c_{2}=c_{2}$ pcripoteri iudutorve
pwiudi $c=c_{1} \times c_{2}=c^{\prime} \times c_{2}^{\prime}=c^{\prime}$

$$
\begin{aligned}
& \frac{\text { Caso }}{B} t_{1} \times t_{2} \rightarrow c \frac{c=0}{c} t_{1} \rightarrow 0 \\
& t_{1} \times t_{2} \rightarrow c c_{1}^{\prime}=0 \\
& r_{1} \rightarrow 0
\end{aligned}
$$

ivuredials

$$
\begin{gathered}
\frac{C a f_{0}}{c} t_{1} \times t_{2} \rightarrow c \underset{c}{c=c_{1} \times c_{2}} t_{1} \rightarrow c_{1} t_{2} \rightarrow c_{2} \\
t_{1} \times b_{2} \rightarrow c \leqslant c^{\prime}=0 \quad t_{1} \rightarrow 0
\end{gathered}
$$

Por ipoled induthva $c_{1}=0$, quinal $c=0 \times c_{2}=0=c^{\prime}$.
$\frac{C \cos }{D}$ suatuchno.
privereges

$$
\text { piq due } n_{1}=0 \text { che } n_{1} \neq 0
$$

secondarepster

$$
\begin{aligned}
& \frac{t_{1} \rightarrow 0}{t_{1} x_{2} \rightarrow 0} \quad c=0 \\
& \left.\Pi t, x \mid=\left\|p=\operatorname{Cond}(L \theta \mid, L \theta], \quad \Pi_{1}\right\| p x_{1}\left\|T_{2}\right\| Q\right)=\angle O \mid
\end{aligned}
$$

$$
\begin{aligned}
& \frac{t_{1} \rightarrow n_{1} t_{2} \rightarrow n_{2}}{t_{1} x t_{2} \rightarrow n_{1} \underline{x} n_{2}} \quad c=n_{1} \frac{x n_{2}}{}
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\operatorname{Cond}\left(\left\langle n_{1}\right|,\lfloor 0\rfloor, L^{n_{1}} \frac{ \pm}{} n_{2}\right\rfloor\right)=\left\langle n_{1} x n_{z}\right\rfloor
\end{aligned}
$$

$$
\begin{aligned}
& t=\frac{0}{\operatorname{int}} \frac{\operatorname{rec} x}{\operatorname{int}} \text { int } \\
& \tan _{\operatorname{ain}} \mathrm{t} \\
& 0 \times \operatorname{rec} x \cdot x \rightarrow c \leq=0 \rightarrow 0<1 \\
& \text { [0xrec x.x] } p=\left[0, x_{1} \text { fixdd. } d=10 \left\lvert\, \frac{x_{1}}{T_{1}} \frac{1}{N_{1}}=\frac{1}{N_{2}}\right.\right. \\
& {[0]_{f}=\left\lfloor 0 \mid \neq 1_{N_{1}}\right.} \\
& \pi+t_{1} x t_{2} ग \rho=\operatorname{Cond}\left([+1] \quad\left[0,[+1] p x_{1}\left[r_{2}\right] p\right)\right.
\end{aligned}
$$

$\frac{\text { ESercizo-4 }}{a}$

$$
\begin{aligned}
& a p \rightarrow a p \\
& \left(q_{1} / q_{2}\right)<\stackrel{a}{\overbrace{b}}\left(q_{1} / c_{q}\right) \cup c \\
& b \pi\|^{2} \underbrace{E}\|^{2}{ }^{2} \\
& \left.\left(\bar{c} q_{1} q_{2}\right)+\underset{b}{\underset{b}{\leftrightarrows}}\left(\bar{c} q_{1} / c q_{2}\right)\right) c \\
& q=\left(q_{1} / q_{2}\right)>c \\
& q_{1}=\operatorname{rec} x, a \bar{c} x \\
& \text { arche } \Rightarrow \operatorname{mogh} \operatorname{stan} \\
& q_{2}=r \operatorname{ccc} x \cdot \operatorname{scx} \\
& R_{1}=\left\{\left\{p, b p, a p_{1} q_{,}\left(c q_{1} / q_{2}\right) c,\left(q_{1} \mid c q_{2}\right)<c\left(\overline{q_{1}} \mid q_{q}\right) \backslash c\right\}\right\} \\
& R_{1}=\left\{\left\{p, q_{1}\left(c q_{1} \mid c q_{2}\right) c\right\}\left\{\left\{q_{1} p_{1}\left(q_{1} \mid k q_{2}\right) c\right\}\right\} p p,\left(c q_{1} \mid q_{2}\right) c p\right\} \\
& R_{2}=R_{1}
\end{aligned}
$$

$a p)\left(q_{1} \mid c q_{2}\right)<1=$ a vac λ bpalse
$b p,\left(c q_{1} \mid q_{2}\right)<c|=5\rangle$ irue 1 手 false

Exercise 5

- To be ergo die we must have $a_{i}^{\prime} \neq 0, i=a_{1}, m$ to guarantee reachability aud it shod exit i wite $\alpha_{i} \neq 1$, oterwine all paths are ofleygte $n+1$
- We have $\left.\left.\lambda\left(P_{i}\right)\left\{P_{i+1}, Q_{i+1}\right\}=\lambda\left(\Psi_{i}\right)\right\} P_{i+1}, Q_{i+1}\right\}=a_{i}$

Thus $\left\{\left\{P_{1}\right\}\left\{P_{1}, q_{1}\right\}, m\left\{P_{n-1}, q_{n-1}\right\},\left\{P_{n}\right\}\right\}$
is a sitimuletion

- The reduced $\angle T S$ is in Fig (b) above.

The steady state equations are

$$
\begin{aligned}
& a_{n} p_{n}+\left(1-a_{0}\right) p_{0}=p_{0} \quad a_{n} P_{n}=a_{0} P_{0} \\
& a_{i-1} p_{i=1}+\left(1-a_{i}\right) P_{i}=p_{i} \quad a_{i-1} P_{i-1}=a_{i} p_{i} \quad i=1,+, n \\
& \sum_{i=0, n, n} P_{i}=1 \\
& \frac{P_{0}+\frac{a_{0}}{a_{0}} P_{0}+\cdots+a_{0} P_{0}}{a_{n}}=1 \quad P_{0}=\frac{1}{\frac{1+a_{0}+\cdots+\frac{a_{0}}{a_{n}}}{a_{1}}} \\
& p_{0}=\frac{1}{a_{0}} \frac{1}{\frac{1}{a_{0}}+\frac{1}{a_{1}}+m+\frac{1}{a_{n}}} \\
& P_{i}=\frac{1}{a_{v}} \frac{1}{\frac{1}{a_{0}}+\frac{1}{a_{1}}+1 n+\frac{1}{a_{w}}} \quad \dot{c}=0, n, n
\end{aligned}
$$

