Models of Computation

Written Exam on February 10, 2014

Exercise 1(6)

Given the IMP command:

w = while $x \neq 0$ do (x := x - 1; y := y + 1)

prove using Scott computational induction that, no matter what memories $\sigma \in \sigma'$ are, we have:

$$\mathcal{C}\llbracket w \rrbracket \sigma = \sigma' \quad \Rightarrow \quad \sigma x \ge 0 \ \land \ \sigma' = \sigma \left[\frac{\sigma x + \sigma y}{y}, \frac{0}{x} \right].$$

Exercise 2 (8)

Consider the set $\{\omega \times \omega\}$ of pairs of natural numbrs with the lexicographic ordering \sqsubseteq defined as

$$(n_1, m_1) \sqsubseteq (n_2, m_2)$$
 if $n_1 < n_2$ or if $n_1 = n_2$ and $m_1 \le m_2$.

Prove that \sqsubseteq is a partial ordering with bottom. Then show that the chain $\{(0,k)\}_{k=0,1...}$ has lowest upper bound, but also exhibit a chain without lub. Moreover, consider the set $\{[N] \times \omega\}$ con $[N] = \{n | n \leq N\}$, with the same ordering, and then show, also in this case, a chain without lub. Finally, prove that $\{[N] \times (\omega \cup \{\infty\})\}$ with the same ordering, where $x \leq \infty$, is complete with bottom, and show a monotone, non continuous function on it.

Exercise 3 (6)

Redefine the operational semantics of multiplication in HOFL as follows:

$$\frac{t_1 \to n_1 \quad t_2 \to n_2}{t_1 \times t_2 \to n_1 \times n_2} \quad \frac{t_1 \to 0}{t_1 \times t_2 \to 0}$$

Prove by structural induction that also with the new definition multiplication is deterministic, namely $t_1 \times t_2 \rightarrow n$ and $t_1 \times t_2 \rightarrow n'$ implies n = n'. However observe that now for the (well typed) term $t = 0 \times rec \ x.x$ it does not hold that $t \rightarrow c$ implies $[t_1] \rho = [c_1] \rho$.

Finally, redefine also the denotational semantics of multiplication and prove that $t_1 \times t_2 \rightarrow c$ implies $[t_1 \times t_2] \rho = [c] \rho$.

Exercise 4(5)

Consider the CCS agents:

 $p = rec \ x.abx + bax$ $q = ((rec \ x.a\overline{c}x)|rec \ x.bcx)\backslash c,$

compute all the states reachable from them in the **weak** transition system (\Rightarrow) and, using the iterative computation method for the fixpoint, partition the reachable states in the weak bisimilarity classes, observing that p and q turn out to be bisimilar. Finally, find for every class a formula of Hennessy Milner logic which holds for the elements of the given class and not for any other element.

Exercise 5(5)

A given DTMC consists of states $S = \{p_i\}_{i=0,\dots,n} \cup \{q_i\}_{i=1,\dots,n-1}, n \ge 2$ and of transitions:

$$p_i \stackrel{a_i}{\to} p_{i+1} \quad i = 1, \dots, n-1 \qquad p_i \stackrel{1-a_i}{\to} p_i \quad i = 0, \dots, n \qquad p_0 \stackrel{a_0/2}{\to} p_1 \qquad p_0 \stackrel{a_0/2}{\to} q_1 \qquad p_n \stackrel{a_n}{\to} p_0$$

$$q_i \stackrel{a_i}{\to} q_{i+1} \quad i = 1, \dots, n-2 \qquad q_i \stackrel{1-a_i}{\to} q_i \quad i = 1, \dots, n-1 \qquad q_{n-1} \stackrel{a_{n-1}}{\to} p_n.$$

Draw the DTMC, show for which parameter values the chain is ergodic, and prove that the relation $p_i \equiv q_i$ $i = 1 \dots n - 1$ is a bisimulation. Finally, find the steady state probabilities of all the states of the reduced DTMC.

Propriete n	2 flek; 12: ("	$(n, m) \in (n, m)$) onno	
Propriede au Ripriete h	Winmehicg rawling : (m.,	$: (n_1, m_1) \equiv (n_1, m_2) \equiv (n_1 = m_2)$ $= n_1 = m_2$ $(n_1, m_2) \in (n_2, m_2)$	$\frac{n_2}{2}, \frac{m_2}{2}, \frac{n_2}{2} = \left(\frac{n_2}{2}, \frac{m_2}{2}, \frac{m_2}{2}, \frac{n_2}{2}, \frac{n_2}$	$\frac{1}{2}\left(n_{1}, m_{1}\right)$ $\frac{1}{2}\left(n_{2}, m_{1}\right)$ $\frac{1}{2}\left(n_{2}, m_{2}\right)$ $\frac{1}{2}\left(n_{2}, m_{2}\right)$
$\frac{1}{(0,0)} = (0,0)$	$(D, 0) \equiv (u, m)$ $(1) \equiv m ha$	anio coure leib	(1, D) mining	$2(n,ne)$ } $4 \le n$
)∈(2,p)⊆…	laceveux quinti ne	Cinficure der ma 2(m, o) (- muneno lub, - en meno lub, -	pfiorauti uter mappiorauti
	Xw} le ceteur	e (N,o)=(r nor le mey	J, 1) E ~ J (N, ~ pporaul	$\frac{1}{m} = 0.4, \dots$
<u><u> </u></u>	× (120203)} = {suite, sta	in mare celic n 10 dra line	$\frac{1}{16}$	1.2 4.2
eristère fileite.	(m, N) ucha	, catcing con c 6 stells, (0,	~ N'> L essendo , P).	lacebra
f e mondo Per la cat	$= \frac{1}{n^2} \left(\frac{n}{n}, \frac{n}{n} \right) = \frac{1}{n^2} \left(\frac{n}{n} \right) \left(\frac{n}{n} \right)$	= 0 e flu ntrune: vale	$\left(\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}\right),\frac{1}{2}\right)=\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}\right),\frac{1}{2}\right)$	
meutic 1	$\frac{1}{6} \left(0 \right) = \frac{1}{6}$			

