
Cache Coherence Techniques

Silvia Lametti

December 1, 2010

Master Program in Computer Science and Networking

Course High Performance Computing Systems and Enabling Platforms

Foreword

to the report “Cache Coherence Techniques” by Silvia Lametti

This survey report on cache coherence techniques is a part of the Master Thesis in Computer

Science by Silvia Lametti, a new student of the PhD School in Computer Science of the University

of Pisa.

The Master Thesis deals with a deep comparison of automatic and algorithm dependent approaches

to cache coherence.

This excellent survey report covers, in a very clear and rigorous way, the set of techniques and

protocols for automatic cache coherence, that can be considered the most interesting and widely

applied at the current state-of-the-art of medium-low parallelism and of high-parallelism

multiprocessor architectures.

This report is suggested as an optional teaching material of the High Performance Computing

Systems and Enabling Platforms course, for the students interested to deepen this subject, and for

scientific and/or professional culture.

Marco Vanneschi

Contents

1 Cache Coherence 4
1.1 The Cache Coherence Problem 4

1.1.1 Invalidation vs Update 5
1.2 Cache Coherence Protocols . 5

1.2.1 The MSI protocol . 6
1.2.2 The MESI protocol . 9
1.2.3 The MOSI protocol . 12
1.2.4 The Dragon protocol 12
1.2.5 Multilevel cache hierarchies 15

2 Automatic Cache Coherence 18
2.1 Snoopy-based . 18

2.1.1 Snooping protocol for cache coherence 19
2.1.2 Cache-to-cache sharing 22

2.2 Directory-based . 23
2.2.1 Flat . 26
2.2.2 Hierarchical . 35

2.3 Hybrid approaches . 36

3

cpui

ci

Pi

interconnection structure

M

cpuj

cj

Pj

5
X

5
X

1

5
X

3

X := 7 X = ?

4

Wi Wj

2

Figure 1: The cache coherence problem

1 Cache Coherence

In multiprocessor architectures caching plays a very important double
role: as in uniprocessors, it contributes to minimize the instruction service
time, but especially it contributes to reduce the memory congestion, that is
the memory utilization factor.
In all-cached architectures, where any information is transferred into the pri-
mary cache before being used, the presence of writable shared information
in caches introduces the problem of Cache Coherence.

1.1 The Cache Coherence Problem

The cache coherence problem arises from the possibility that more than
one cache of the system may maintain a copy of the same memory block.
If different processors transfer into their cache the same block, it is necessary
to ensure that copies remain consistent with each other and against the copy
in main memory.

As summarized in figure 1, the system considered has a shared memory

4

M, it consists of processors Pi, each with its cache Ci. If Pi and Pj transfer
the same variable X from the main memory M into their respective caches, if
X is read-only no consistency problem arises. If Pi modifies X, the X copy in
Cj becomes inconsistent. Moreover, in a write-back system, other processors
find a inconsistent value of S in M, when they transfer X in their cache.

1.1.1 Invalidation vs Update

In many systems, the cache coherence techniques are entirely imple-
mented at the firmware level. Two main techniques, called automatic cache
coherence techniques, are used:

• invalidation, in which it is assumed that the only valid copy of a block
is one of those, usually the last one, that has changed, invalidating all
other copies; in a write-through system the copy in M is also valid;

• update, in which each modification of a cache block copy is communi-
cated (multicasted) to all other caches.

In the previous example, if Pi wants use X, the first access will cause the
transfer of the block which contains X in Ci. If Pj also has a copy of the
same block in its cache, then the first of two, say Pi, which performs a write
on the X block:

• with the invalidation mechanism, invalidates the copy of the block in
Cj;

• with the update mechanism, updates the copy of the block in Cj by
sending the updated data by diffusion.

At first sight, the update technique appears simpler, while invalidation is
potentially affected by a sort of inefficient “ping-pong” effect. However, in
the real utilization of cache coherent systems: the update mechanism has a
substantially higher overhead, also due to the fact that only a small fraction of
nodes contain the same block; on the other hand, processor synchronization
reduces the “ping-pong” effect substantially, so invalidation is adopted by
the majority of systems.

1.2 Cache Coherence Protocols

In all the systems which use the automatic techniques, a proper protocol
must exists in order to perform the required actions atomically.
In a generic cache coherence protocol each block in a cache has a state asso-
ciated with it, along with the tag and data, which indicates the disposition

5

of the block. The cache policy is defined by the cache block state transition
diagram, which is a finite state machine specifying how the disposition of a
block changes. While only blocks that are actually in cache lines have sate
information, logically, all blocks that are not resident in the cache can be
viewed as being in either a special “not present” state or in the “invalid”
state.
In a uniprocessor system, for a write-through, write-no-allocate cache, only
two states are required: valid and invalid. Initially, all the block are invalid;
when a processor read causes a fault, the block is transferred from the mem-
ory into the cache and it’s marked valid. Writes do not change the state of
the block, they only update the memory and the cache block if it is present
in the valid state. If a block is replaced, it may be marked invalid until the
memory provides the new block, whereupon it becomes valid.
A write-back cache requires an additional state per cache line, indicating a
“dirty” or modified block.
In a multiprocessor system, a block has a state in each cache, and these cache
states change according to the state transition diagram. Thus, we can think
of a block’s cache state as being a set of n states, where n is the number
of caches. The cache state is manipulated by a set of n distributed finite
state machines, implemented by the units W of each node (see figure 1) that
act as cache coherence controllers. The state machine that governs the state
changes is the same for all blocks and all caches, but the current state of a
block in different caches is different.

1.2.1 The MSI protocol

The MSI protocol is a basic invalidation-based protocol for write-back
caches.
The protocol uses the three states required for any write-back cache in order
to distinguish valid blocks that are unmodified from those that are modified
(dirty). These states are:

• Modified: also called dirty, means that only this cache has a valid copy
of the block, and the copy in main memory is stale;

• Shared: means the block is present in an unmodified state in this cache.
main memory is up-to-date, and zero or more other caches may also
have an up-to-date (shared) copy;

• Invalid: has the obvious meaning.

Before a shared or invalid block can be written and placed in the modified
state, all the other potential copies must be invalidated.

6

M

S

I

store

S_REQ

load

L_REQ

store

S_REQ

load / -- store / --

load / --

L_REQ / --

L_REQ

Flush

S_REQ / --

S_REQ

Flush

Figure 2: MSI State Diagram

7

The state transition diagram in figure 2 shows the possible state tran-
sitions of a cache block. All the diagram transitions have a label of the
form R/A, where R indicates a request while A represent the action that the
cache coherence controller must be taken following the request made. As in
the others protocols, each of these transitions is composed of one or more
operations and, for the correctness of the protocol, it’s necessary that these
be performed in an atomic way.
There are two types of transition, based on who makes the request:

• the bold arcs represent the transitions due to the read (LOAD) and write
(STORE) processor issues;

• the dashed arcs represent the transition due to requests from the other
caches (L REQ and S REQ).

The requests from the processor may refer to a memory block that exists in
the cache or to one that does not. In the latter case, a block currently in
the cache will have to be replaced by the newly requested block, and if the
existing block is in modified state, its contents will have to be written back
to main memory (WRITE BACK).

Transitions due to processor requests A processor read to a block that
is invalid, or not present, involves sending a read request as a result of the
fault. The newly loaded block is promoted from invalid to the shared state
in the requesting cache. No action is taken if a read request refers to a block
in a shared or modified state.
A processor write which refers to an invalid block cause a write fault and in-
volves sending a write request. The newly loaded block is stored as a modified
block. Instead, if the processor write refers to a shared block then, as before,
the request cause a write fault in order to acquire the exclusive ownership.
The data that comes back can be ignored in this case, since it is already in
cache. In fact, a common optimization to reduce data traffic is to introduce
a new type of transition that send update request which doesn’t involves any
data transfer. Additional writes to the block while it is in modified state
generate no additional actions.
A replacement of a block from a cache logically corresponds to change the
state to invalid; if the block being replaced was in modified state, the replace-
ment transition from modified to invalid involves updating the main memory
(WRITE BACK). Instead, no action is taken if the block being replaced was in
shared state.

8

Transitions due to requests from the other caches A read request
from another cache to a block which is in cache in a modified state, involves
executing of a particular operation (FLUSH of the data), that is sending the
updated data from the cache to the requesting cache and the updating of
main memory; after that the block state change to shared. No action is
taken if the read request from another cache refers to a block which is in
cache in a shared state.
A write request from another cache into a block which is in cache in a modified
state, causes executing of the FLUSH, as in the read request, but in this case
the block is invalidated. If the request refers to a block which is in cache in
a shared state, the only action to be taken is the invalidation of the block.

1.2.2 The MESI protocol

The MESI protocol (known also as Illinois protocol due to its development
at the University of Illinois at Urbana-Champaign [10]) is a widely used cache
coherence protocol. It is the most common protocol which supports write-
back cache.
Analyzing the MSI protocol, the first factor of inefficiency can be seen when
a process needs to read and modify a data item: the transitions that are
caused are always two, even when there are no other nodes sharing the cache
block. In fact, it is initially generated a transition that gets the memory
block in shared state; the second transition is caused by the processor write
request that converts the state of the block from shared to modified.
The MESI protocol adds an Exclusive state to reduce the traffic caused by
writes of blocks that only exist in one cache. This new state indicates an
intermediate level of binding between shared and modified:

• unlike the shared state, the cache can perform a write and move to the
modified state without further requests;

• it does not imply ownership (memory has a valid copy), so unlike the
modified state, the cache need not reply upon observing a request for
the block from another cache.

Transitions due to processor requests The state transition diagram
in figure 3 shows the possible state transitions of a cache block caused by
processor requests. When the block is first read by a processor, if a valid copy
exists in another cache (condition (s) in figure), then it enters the processor’s
cache in shared state, as usual. However, if no other cache has a copy at the
time (condition (s̄) in figure), it enters the cache in exclusive state. The next
read requests from the processor keep unchanged the status of the block.

9

M S

I

store

S_REQ

load

L_REQ (S)

store

S_REQ

load / --
store / --

load / --

e
load / --

load

L_REQ ()

store / --

S

Figure 3: MESI state diagram: transitions due to processor requests

When the block is written by the same processor, it can directly transition
from exclusive to modified state without generating another request since
no other cache has a copy. If another cache had obtained a copy in the
meantime, the state of the block would have been demoted from exclusive to
shared by the protocol.

Transitions due to requests from the other caches The state transi-
tion diagram in figure 4 shows the possible state transitions of a cache block
caused by requests from the other caches.
A read request from another cache for an exclusive block causes a state tran-
sition from exclusive to shared.
A write request form another cache causes the invalidation of the block.
With the introduction of the exclusive state, in multiprocessor with Snoopy-
based cache coherence protocol (see section 2.1), a technique called cache-
to-cache sharing can be used for the sharing of blocks between caches. The
FLUSH operations shown in parentheses refer to the use of this technique.

The Write Once Protocol

A write may only be performed if the cache line is in modified or exclusive
state. If it is in the shared state, all other cached copies must be invalidated

10

M S

I

L_REQ

Flush

S_REQ

(Flush)

S_REQ

Flush

L_REQ

(Flush)

e

S_REQ

(Flush)

L_REQ

(Flush)

Figure 4: MESI state diagram: transitions due to requests from the other
caches

first. This is typically done by a broadcast operation known as Read For
Ownership (RFO). In cache coherence protocol literature, Write-Once is the
first write-invalidate protocol defined.
In this protocol, each block in the local cache is in one of these four states:

• Invalid;

• Valid;

• Reserved;

• Dirty.

These states have exactly the same meanings as the four states of the MESI
protocol (they are simply listed in reverse order), but this is a simplified form
of it that avoids the Read for Ownership operation. Instead, all invalidation
is done by writes to main memory. In particular, the first time that the
processor intends to write in a valid block (shared) uses the technique of
write-through, which implicitly invalidates all other copies of the block. At
this point, the block is cached in a reserved state (exclusive), and subsequent
writes may be carried out simply by changing the status of the cache block
in dirty (modified).

11

1.2.3 The MOSI protocol

The MOSI protocol is another extension of the basic MSI cache coherence
protocol. It adds the Owned state. A cache line in the owned state holds
the most recent, correct copy of the data. This state is:

• similar to the shared state in that other processors can hold a copy of
the most recent, correct data;

• similar to the modified state, in fact the copy in main memory can be
stale (incorrect).

Only one cache can hold the data in owned state, all other caches must hold
the data in shared state. The state block may be changed to modified after
invalidating all shared copies, or changed to shared by writing the modifica-
tions back to main memory.
In response to requests for read and/or write by another cache for an owned
block, the cache must performs the FLUSH of the data, such as the modified
state; in this case, however, the request for writing does not necessarily entail
the invalidation of the block, which can be kept in cache in shared state.

The MOESI protocol

The MOESI protocol, introduced in [11], encompasses all of the possible
states commonly used in other protocols. Figure 5 allows us to understand
how to classify a cache block with the MOESI protocol, according to the
following three characteristics:

• validity;

• exclusiveness;

• ownership.

This avoids the need to write modified data back to main memory before
sharing it. While the data must still be written back eventually, the write-
back may be deferred.

1.2.4 The Dragon protocol

Let us examine a basic update-based protocol for write-back caches. This
protocol was first proposed by researchers at Xerox PARC for their Dragon
multiprocessor system [9]. The Dragon protocol consists of four states:

12

Invalid

Shared

Exclusive

Modified

Owned
OWNERSHIP

VALIDITY

EXCLUSIVENESS

Figure 5: MOESI classification

• Exclusive-clean: (or exclusive) has the same meaning and the same
motivation as before: only one cache (this cache) has a copy of the
block, and it has not been modified (the main memory is up-to-date);

• Shared-clean: means that potentially two or more caches (including
this one) have this block, and main memory may or may not be up-to-
date;

• Shared-modified: means that potentially two or more caches have this
block, main memory is not up-to-date, and it is this cache’s responsi-
bility to update the main memory at the time this block is replaced
from the cache; a block may be in this state in only one cache at a
time; however it is quite possible that one cache has the block in this
state, while others have it in shared-clean state;

• Modified: signifies exclusive ownership as before; the block is modified
and present in this cache alone, main memory is stale, and it is this
cache’s responsibility to supply the data and to update main memory
on replacement.

Note that there is no explicit invalid state as in the previous protocols, be-
cause it is an update-based protocol. The protocol always keeps the blocks

13

e Sc

M

L_REQ / --

store

UP_REQ ()

store / --

load / -- load / --

SM

UP_REQ

Update

load

L_REQ ()

S

UP_REQ

Update

L_FAULT

L_REQ (S)

Store

UP_REQ (S)

S

S_FAULT

L_REQ ()S

load / --

Store / --
store

UP_REQ ()

S

Load

flush

S_FAULT

(L_REQ (S);
UP_REQ)

load / --

Store

UP_REQ (S)

L_REQ

flush

Figure 6: Dragon protocol

in the cache up-to-date, so it is always okay to use the data present in the
cache if the tag match succeeds. However, if a block is not present in a cache
at all, it can be imagined in a special invalid or not-present state.
Figure 6 shows the state transition diagram of the Dragon protocol. Since
we do not have an invalid state, to specify actions it is necessary to distin-
guish whether the requested block is present or not in cache. In addition to
the read requests (LOAD) and writing (STORE) of a block in this cache, we
also consider the generation of fault as a result of cache reads (L FAULT) and
writing (S FAULT).
The actions that the cache coherence controller can be taken in response to
requests of the node are: the read (L REQ) and the update (UP REQ) requests;
can also be performed the write-back (WRITE BACK) and the update (UPDATE)
of the block. The update request concerns a specific word of the block and is
used to maintain updated the caches that share the block. To do this, each
controller uses the UPDATE action to keep updated the local copy.
Let’s look at what action is taken when a cache incurs a fault for a read
request, a write (which causes a fault or not), or a replacement.

Fault for a read request A read request is generated. Depending on the
status, that is if the block is in another cache (s) or not (s̄), the block is
loaded in exclusive or shared-clean state in the local cache. If the block is in

14

modified or shared-modified in one of the other caches, that cache supplies
the latest data for that block, and the block is loaded in the local cache
in shared-clean state. If the block is in shared-clean state in other caches,
memory supplies the data, and it is loaded in shared-clean state. If no other
cache has a copy, the data is supplied by the main memory, and the block is
loaded in the local cache in exclusive state.

Write If the block is in modified state in the local cache, then no action
needs to be taken. If the block is in the exclusive state in the local cache,
then it changes to modified state and again no further action is needed. If the
block is in shared-clean or shared-modified state, however, an update request
is sent. If any other caches have a copy of the data, they update their cached
copies and change their state to shared-clean if necessary. The local cache
also updates its copy of the block and changes its state to shared-modified if
necessary. If no other cache has a copy of the data, the local copy is updated
and the state is changed to modified.
Finally, if on a write the block is not present in the cache, the write is treated
simply as a fault for a read request: a read request is generated followed by
a write request. If the block is also found in other caches, an update request
is generated, and the block is loaded locally in the shared-modified state;
otherwise, the block is loaded locally in the modified state.

Replacement On a replacement, the block is written back to memory only
if it is in modified or shared-modified state. If it is in the shared-clean state,
then either some other cache has it in shared-modified state or none does, in
which case it is already valid in main memory.

1.2.5 Multilevel cache hierarchies

The simple design presented in the preceding section was illustrative, but
it made a simplifying assumption that is not valid on most modern systems:
single-level caches. Many systems use on-chip secondary caches as well and an
off-chip tertiary cache. Multilevel cache hierarchies would seem to complicate
coherence since changes made by the processor to the first-level cache may
not be visible to the cache coherence controller and, in a snoopy-based system
bus transactions are not directly visible to the first-level cache.
Let us consider a two-level hierarchy for concreteness; the extension to the
multilevel case is straightforward. One obvious way to handle multilevel
caches is to have independent cache coherence controller for each level of
the cache hierarchy. This is unattractive for several reasons. In addition to
making complicated the system design, most of the time, the blocks present in

15

the L1 cache are also present in the L2 cache; therefore, the communications
between the levels (the snoop, in the snoopy-based systems) are unnecessary.
The solution used in practice is based on this last observation. When using
multilevel caches, designers ensure that they preserve the inclusion property,
which requires the following:

• if a memory block is in the L1 cache, then it must also be present in
the L2 cache; in other words, the contents of the L1 cache must be a
subset of the contents of the L2 cache;

• if the block is in an owned state (e.g., modified in MESI, owned in
MOSI, shared-modified in Dragon) in the L1 cache, then it must also
be marked modified in the L2 cache.

The first requirement ensures that all actions taken that are relevant to the
L1 cache are also relevant to the L2 cache, so having only a cache coherence
controller for the L2 cache is sufficient. The second ensures that if a request
for a block that is in modified state in the L1 cache or L2 cache, then it is
enough to keep track of this information only for the L2 cache.

Maintaining inclusion

The requirements for inclusion are not trivial to maintain. Three aspects
need to be considered:

• processor references to the L1 cache cause it to change state and per-
form replacements; these need to be handled in a manner that main-
tains inclusion;

• requests from other nodes cause the L2 cache to change state and flush
blocks; these need to be forwarded to the first level;

• the modified state must be propagated out to the L2 cache.

At first glance, it might appear that inclusion would be satisfied automati-
cally since all L1 cache fault go to the L2 cache. The problem is that the
implementation of this approach can be complicated by the use of certain
techniques typically implemented in cache hierarchies, such as block replace-
ment policies based on the history of access (e.g., LRU replacement policy),
the use of more cache at the same level (e.g., first-level cache is divided into
instruction cache and data cache) or the use of different block sizes (σ1 and
σ2) between the two levels of hierarchy. In order not to give up the benefits
obtained from the use of these techniques, inclusion is maintained explicitly

16

by extending the mechanisms used for propagating coherence events through
the cache hierarchy.
Whenever a block in the L2 cache is replaced, the address of that block is
sent to the L1 cache, asking it to invalidate or flush (if modified) the corre-
sponding blocks (there can be multiple blocks if σ2 > σ1).
Considering requests from other nodes, some, but not all, of these requests
relevant to the L2 cache are also relevant to the L1 cache and must be prop-
agated to it. For example, if a block is invalidated in the L2 cache, the
invalidation must also be propagated to the L1 cache if the data is present in
it. Inform the L1 cache of all actions that were relevant to the L2 cache is the
easiest solution but in many cases it is useless. A more attractive solution is
for the L2 cache to keep extra state (inclusion bit) with cache blocks; which
record whether the block is also present in the L1 cache. It can then suitably
filter interventions to the L1 cache at the cost of a little extra hardware and
complexity.
Finally, on an L1 write, the modifications needs to be communicated to the
L2 cache so it can supply the most recent data if necessary. One solution is
to make the L1 cache write-through. The requirement can also be satisfied
with write-back L1 caches since it is not necessary that the data in the L2

cache be up-to-date but only that the L2 cache knows when the L1 cache
has more recent data. Thus, the state information for L2 cache blocks is
augmented so that blocks can be marked “modified-but-stale”. The block in
the L2 caches behaves as a modified block for the cache coherence protocol,
but data is fetched from the L1 cache when it need to be flushed to other
nodes. One simple approach is to set both the modified and invalid bits in
the L2 cache.
Keep the inclusion property allows for advantages in performance, even in
systems where a level of cache hierarchy is shared (as shown in [6]), as it
avoids, as also said before, making unnecessary communications.
Other techniques for the maintenance of the inclusion property are presented
in [2].

17

2 Automatic Cache Coherence

Automatic cache coherence techniques allow programmers to develop pro-
grams without taking into account the cache coherence problem. In fact no
explicit coherence operations must be inserted in the program.
Two main classes of architectural solutions have been developed for auto-
matic caching:

• Snoopy-based, described in section 2.1, in which a bus is used as a
centralization point at firmware level;

• Directory-based, which implements cache coherence protocols using shared
data in main memory, as explained in section 2.2; this solution is
adopted in highly parallel systems, with powerful interconnection net-
works.

2.1 Snoopy-based

A simple solution to the problem of cache coherence is one that uses a
firmware level point of centralization, in particular the use of a bus, also
known as Snoopy bus. Each of devices connected to the bus can observe
every bus transaction, for example, every read or write on the shared bus.
When a processor issues a request to its cache, the unit W , which act as cache
controller, examines the state of the cache and takes suitable action, which
may include generating bus transactions to access memory. Coherence is
maintained by having all cache controllers “snoop” on the bus and monitor
the transactions from other nodes, as illustrated in figure 7. The unit W
may take action if a bus transaction is relevant to it, that is, if it involves a
memory block of which it has a copy in its cache. The key properties of a
bus that support coherence are the following:

• all transactions that appear on the bus are visible to all cache con-
trollers;

• they are visible to all controllers in the same order, the order in which
they appear on the bus.

The check to determine if a bus transaction is relevant to a cache is essentially
the same tag match that is performed for a request from the processor. The
action taken may involve invalidating or updating the contents or state of
that cache block and/or supplying the latest value for that block from the
cache to the bus.

18

cpu0

cI

PI

WI

M

cpun

cJ

PJ

WJ

SNOOPY BUS
C0-M

transaction

SNOOP

Figure 7: Cache Coherence through Bus Snooping

2.1.1 Snooping protocol for cache coherence

In a snooping cache coherence system, each cache controller receives two
sets of inputs:

• the processor issues memory requests;

• the bus snooper informs about bus transactions from other caches.

In response to either, the unit W may update the state of the appropriate
block in the cache according to the current state and the state transition
diagram.
Thus, a snooping protocol is a distributed algorithm represented by a collec-
tion of cooperating finite state machines, which is specified by the following
components:

• the set of states associated with memory blocks in the local caches;

• the state transition diagram, which takes as inputs the current state
and the processor request or observed bus transaction and produces as
output the next state for the cache block;

19

V

I

L_fault

BusRd

load / --

store

BusWR

BusWR / --

store

BusWR

Figure 8: Snoopy coherence for a multiprocessor with write-through, write-
no-allocate caches

• the actions associated with each state transition, which are determined
in part by the set of feasible actions defined by the bus, the cache and
the processor.

As introduced in section 1, the set of operations required to execute a state
transition must be performed in an atomic way. In this particular case, atom-
icity is achieved merely by the bus (atomic bus); in fact, only one transaction
is in progress on the bus at a time.
Let’s see now how the units W interact with the bus in order to maintain con-
sistency. A simple invalidation-based protocol for a coherent write-through,
write-no-allocate cache is described by the state transition diagram in figure
8. In particular, suppose that the bus makes available the following transac-
tions:

• BusRd for the read request, which includes the address of the requested
data;

• BusWr for the write request, which, in addition to the address, includ-
ing the data to write;

As shown in the figure, when the unit W sees a read request from its pro-
cessor which is referred to data not present in cache, a BusRd transaction is

20

generated, and upon completion of this transaction the block transitions up
to the valid state. Whenever the controller sees a processor write request for
a location, a bus transaction is generated that updates that location in main
memory with no change of state. If any processor generates a write request
for a block that is cached in this cache, then the block must be invalidated.

Maintaining coherence in the write-through protocol In the write-
through protocol all writes appear on the bus, feature that greatly simplifies
the maintenance of coherence. In fact, since only one bus transaction is in
progress at a time, in any execution all writes to a location are serialized by
the order in which they appear on the bus. Since each cache controller per-
forms the invalidation during the bus transaction, invalidations are performed
by all cache controllers in that order. In this way, the protocol imposes a
partial ordering of operations, from which can be construct a hypothetical
total order that allows the maintenance of cache coherence. In particular the
order can be formalized as follows:

• a memory operation M1 is subsequent to a memory operation M2 if the
operations are issued by the same processors in the same order;

• a read operation is subsequent to a write operation W if the read gen-
erates a bus transaction that follows that for W ;

• a write operation is subsequent to a read or write operation M if M
generates a bus transaction and the bus transaction for the write follows
that for M ;

• a write operation is subsequent to a read operation if the read does not
generate a bus transaction (it refers to a block already present in cache)
and is not already separated from the write by another bus transaction.

As we said, this sort can be established easily because each STORE instruction
is immediately translated into a BusWr transaction.
Let’s analyze now what happens in the protocols for write-back caches. As
introduced in section 1.2, write-back caches cause the introduction of the
modified state. This results in the exclusive possession of the block; exclu-
sivity, which means that the cache may modify the block without notifying
the changes to other nodes.
To accomplish this the bus must provide a particular type of transaction
called read exclusive (BusRdX), sent from the unit W on the by when it
receive a write request from the processor to a block that is:

• either not in cache;

21

• or is in the cache but not in the modified state.

When the unit W observes a BusRdX transaction on the bus, it must deter-
mine whether the requested block is present in the cache and, in this case, it
must invalidate its copy.
Another type of transaction required in the case of write-back cache: the
BusWB transaction is generated by a cache controller on a write back. This
transaction is also generated by the FLUSH operation after a request, from
another node, for a block that is in cache in the modified state.
In the MESI protocol, introduced in section 1.2.2, but also in the Dragon
protocol (see section 1.2.4, the introduction of the concept of sharing a block
leads to a distinction in the state change of a block, a distinction based on
the fact that the block is in the shared state in another cache or not. In
protocols that use a Snoopy Bus is necessary that the interconnection struc-
ture provides a mechanism to determine when this condition occurs. To do
this the bus offer an additional signal, called shared signal (S). When a cache
controller observes a transaction and determines if the block is in its cache,
if so it must send the shared signal that is put in OR with all the signals
from other nodes. In this way the unit W which sent the transaction can
determine if the block is present in another cache in the shared state.

Maintaining coherence in the write-back protocol As we have seen,
the BusRdX transaction ensures that the cache which is writing into a block
has the only valid copy, just like with the BusWr in the write-through cache.
Although not all writes generate bus transaction, we know that between two
transactions that relate to a block, that the processor Pi has obtained as
exclusive copy, only Pi can execute write operation on this block. When
another processor Pj request a read for the block, we know that there is at
least one transaction on the bus (generated by the FLUSH operation) for that
block that separates the completion of the Pi write operation by the read
operation request by Pj. So this transaction ensures that all read operations
see the effects of previous write operation.

2.1.2 Cache-to-cache sharing

An interesting issue that arises with the use of automatic techniques based
on snooping is the choice of who should be charged for sending the data
after the observation of a BusRd or a BusRdX transaction where the block
is updated in main memory and in its cache. With the introduction of the
exclusive state in the MESI protocol (see section 1.2.2) in fact, if the cache has
a block in the shared state, and a read or a write request from another cache

22

refers to it, then the cache may or may not execute the FLUSH operation, this
choice depends on whether or not it enabled cache-to-cache sharing. Figure
4 shows that the FLUSH operation is optional (brackets in the image). This
is because it can sometimes be more convenient, in terms of transfer times,
which is responsibility of one of the cache, that have a valid copy of block
data, send data to the requester.

The MESIF protocol When more than one cache has a valid copy of the
block, it is necessary to have a selection algorithm to determine which of
these should provide the data. The MESIF protocol was developed by Intel,
and explained in [3], to solve this problem.
To do this the protocol use a new state Forward, which indicates that the
cache should act as a designated responder for any requests for the block.

2.2 Directory-based

In highly parallel systems are used interconnection structures that allow
greater scalability than what can be achieved with linear latency networks.
This choice is also reflected in the decision to integrate automatic cache co-
herence mechanisms that scale better than the solutions based on Snoopy
bus. In fact, the protocols based on the snooping technique require that each
node, including any unit W, which acts as a controller of consistency, can
communicate with every other node in order to implement the protocol. To
indicate this type of architecture, typical with a NUMA organization, which
provide a primitive and scalable support for cache coherence, we use the term
CC-NUMA (Cache-Coherent, Non-Uniform Memory Access)
Scalable cache coherence is typically based on the concept of a directory.
Since the state of a block in the caches can no longer be determinated im-
plicitly by placing a request on a shared bus and having it snooped by the
cache controllers, the idea is to maintain this state explicitly in a place, called
directory. Imagine that each memory block corresponding to a cache block
has associated with it a record of the caches that currently contain a copy
of the block and the state of the block in those caches. This record is called
the directory entry for that block, as shown in figure 9. As in Snoopy-based
techniques, there may be many caches with a clean, readable block, but if
the block is writable (possibly modified) in one cache, then only that cache
may have a valid copy. When the node generate a fault for a block, it first
communicates with the directory for the block, then determine, according to
information in the directory entry, where the valid cached copies (if any) are
and what further actions to take. t may take further communications from
the node to maintain the consistency of the block. All access to directories

23

cpu0

c0

P0

W0

cpun

cn

Pn

Wn

interconnection structure

Directory M0 Directory Mn

Figure 9: A NUMA organization with directories

and communications between nodes to maintain cache coherence are man-
aged by the unit W , which acts as a controller of consistency.
By their nature, directory-based mechanisms are independent of the inter-
connection structure used.
The cache coherence protocol uses in directory-based systems may be inval-
idation based, update based, or hybrid, and the set of the cache states are
very often the same, typically that of the MESI protocol (see section 1.2.2).
Given a protocol, a coherent system must provide mechanisms for managing
the protocol; in particular it must perform the following steps when an access
fault occurs:

1. finding out enough information about the state of the location (cache
block) in other caches to determine what action to take;

2. locating those other copies, if needed (e.g., to invalidate them);

3. communicating with the other copies (e.g., obtaining data from them
or invalidating or updating them).

In snoopy-based protocol, all these operations are performed by the broadcast
and snooping mechanism. In directory-based protocol instead, information
about the state of blocks in other caches is found by looking up the directory,
while the location of the copies and any communications between the nodes

24

directory schemes

Flat centralized hierarchical

memory-based cache-based

finding source of
directory information

locating
copies

Figure 10: Directory-based schemes classification

are done through interprocessor communications between nodes, without re-
sorting to broadcast communications.
Since communication with cached copies is always done through interpro-
cessor communications, the real differentiation among directory-based ap-
proaches is in the first two operations of cache coherence protocols: finding
the source of the directory information and determining the locations of the
relevant copies. The first operation allows to identify two possible schemes
that are a great alternative to a centralized solution: the simplest is the flat
scheme, introduced in section 2.2.1, while the hierarchical scheme is described
in section 2.2.2. Flat schemes can be divided into two classes, according to
the location of the other copies of the block: memory-based and cache-based
approaches. Figure 10 summarizes this classification.

The following definitions are useful to distinguish the processing nodes
that interact with one another; for a given cache block:

• home: is the node in whose main memory the block is allocated;

• local (or requestor): is the node that issues a request for the block;

• dirty : is the node that has a copy of the block in its cache in modified
(dirty) state; note that the home node and the dirty node for a block
may be the same;

• owner : is the node that currently holds the valid copy of a block and
must supply the data when needed; in directory protocols, this is either
the home node (when the block is not in dirty state in a cache) or the
dirty node;

25

• exclusive: is the node that has a copy of the block in its cache in an
exclusive state, either dirty or (clean) exclusive as the case may be;
thus, the dirty node is also an exclusive node.

2.2.1 Flat

Flat schemes are so named because the source of the directory information
for a block is in a fixed place, usually at the home that is determined from the
address of the block. On a fault, a single request is sent directly to the home
node to look up the directory (if the home node is remote). Flat schemes
can be divided into two main classes, depending on where can be obtained
all the information relating to a block:

• memory-based schemes, that store the directory information about all
cached copies at the home node of the block;

• cache-based schemes, where the information about cached copies is not
all contained at the home but is distributed among the copies them-
selves; the home simply contains a pointer to one cached copy of the
block; each cached copy then contains a pointer to the node that has the
next cached copy of the block, in a distributed linked list organization.

Memory-based

Consider the use of a memory-based scheme: as shown in Figure 11, the
directory information is kept together with the main memory of each node.

When a cache fault occurs, the local node sends a request to the home
node where the directory information for the block is located.
On a read fault, the directory indicates from which node the data may be
obtained, as shown in figure 12. On a write fault, the directory identifies
the copies of the block, and invalidation request may be sent to these copies,
as shown in figure 13. Recall that a write to a block in shared state is also
considered as a write fault.

A simple organization for the directory information for a block is as a bit
vector of Npresencebits, which indicate for each of the N nodes, whether
that node has a cached copy of the block, together with one or more state
bits. Let us assume for simplicity that there is only one state bit, called the
dirty bit, which indicates if the block is dirty in one of the node caches. Of
course, if the dirty bit is TRUE, then only one node (the dirty node) should
be caching that block and only that node’s presence bit should be TRUE.

26

cpu0

c0

P0

W0

cpun

cn

Pn

Wn

interconnection structure

Directory M0 Directory Mn

0 1 2 n

Dirty

presence bits

Figure 11: Directory memory-based

The directory information for a bock is simply main memory’s view of the
cache state of a block in different caches; the directory does not necessarily
need to know the exact state (e.g., MESI) in each cache but only enough
information to determine what actions to take.
To see in greater detail how a cache fault might interact with this bit vector
directory organization, consider a protocol with three stable cache states
(MSI), a single level of cache and uniprocessor nodes.
The protocol is orchestrated by the unit W of each node, which acts as cache
controller. On a cache fault at node i, the unit Wi looks up the address of
the memory block to determine if the home is local or remote. If it is remote,
a request is sent through the interconnection structure to the home node for
the block, suppose to be the node j. There, the the directory entry for the
block is looked up, and Wj may treat the fault.

If the fault is caused by a read operation:

• if the dirty bit is FALSE, then Wj obtains the block from the main
memory Mj, send the data to the node i and sets the ith presence bit
to TRUE;

• if the dirty bit is TRUE, then Wj send to the node i the identify of
the node k whose presence bit is TRUE (i.e., the owner or dirty node);
Wj can send a block transfer request to the node k, which must change

27

local
node

c

P

WM
+

Dir

home
node

c

P

WM
+

Dir

dirty
NODE

c

P

WM
+

Dir

1. read request
to directory

2. response with
owner identity

3. read request
to owner

4a. data
reply

4b. revision message
to directory

Figure 12: Read fault to a block in modified state in a cache

local
node

c

P

WM
+

Dir

home
node

c

P

WM
+

Dir

sharer
node

c

P

WM
+

Dir

1. read exclusive
request

to directory

2. response with
sharer's identity

3b. invalidation
request to

sharer

4b. invalidation
Ack

sharer
node

c

P

WM
+

Dir

3a. invalidation
request to

sharer

4a. invalidation
ack

Figure 13: Write fault to a block with two sharers

28

the block state to shared in its cache and send the data to both nodes
i and j; node i stores the block in its cache in shared state, while node
j stores the block in the main memory, where the dirty bit is reset and
the ith presence bit is set to TRUE.

If the fault is caused by a write operation:

• if the dirty bit is FALSE, then main memory has a clean copy of the
data; invalidation request must be sent to all nodes j for which the jth
presence bit is TRUE; to do this, the home node supplies the block
to the requesting node i together with the presence bit vector; then
it resets the directory entry, leaving only the ith presence bit and the
dirty bit with a TRUE value (if the request is an upgrade instead of a
read exclusive, an acknowledgment containing the bit vector is returned
to the requestor instead of the data itself); at this point, Wi sends
invalidation requests to the required nodes and waits for invalidation
acknowledgment from the nodes; finally, the node i places the block in
its cache in modified state;

• if the dirty bit is TRUE, then the block is first recalled from the node
j, whose presence bit is TRUE; that cache changes its state to invalid,
and then the block supplied to the node j, which places the block in
its cache in modified state; the directory entry is cleared, leaving only
the ith presence bit set on TRUE.

On a replacement of a dirty block by node i, the dirty data being replaced is
written back to main memory, and the directory is updated to reset the dirty
bit and the ith presence bit. Finally, if a block in shared state is replaced
from a cache, a message may or may not be sent to the directory to reset
the corresponding presence bit so an invalidation is not sent to this node the
next time the block is written.
The bit vector organization described earlier, called a full bit vector organiza-
tion, is the most straightforward way to store directory information in a flat,
memory-based scheme. The main disadvantage of full bit vector schemes, is
storage overhead. There are two ways to reduce this overhead for a given
number of processors while still using full bit vectors. The first is to increase
the cache block size; the second is to put multiple processors, rather than
just one, in a node that is visible to the directory protocol; that is to use a
two-level protocol.
Actually, there are two most interesting alternative solutions: one that re-
duce the number of bits per directory entry, or directory width, and one that
reduce the total number of directory entries, or directory height, by not hav-
ing an entry per memory block.

29

home
node

P

C

dir+mem
W

header
Node

P

Wdir+mem

C

ShareR
NODE

P

Wdir+mem

C

SHarer
node

P

Wdir+mem

C

Figure 14: Directory cache-based

Directory width is reduces by using what are called limited pointer directo-
ries, which are motivated by the observation that most of the time only a few
caches have a copy of a block when the block is written. In [1] is presented
the idea of maintain a fixed number of pointers, less than the number of the
caches in the system. each pointing to a node that currently caches a copy
of the block.
Directory height can be reduced by organizing the directory itself as a cache,
as presented in [4], taking advantage of the fact that since the total amount of
cache in the machine is much smaller than the total amount of memory, only
a very small fraction of the memory block will actually be present in caches
at a given time, so most of the directory entries will be unused anyway.

Cache-based

In flat, cache-based schemes, there is still a home main memory for the
block; however, the directory entry at the home node does not contain the
identities of all sharers but only a pointer to the first sharer in the list plus
a few state bits. This pointer is called the head pointer for the block. The
remaining nodes caching that block are joined together in a distribute, doubly
linked list ; that is, a cache contains a copy of the block also contains pointers
to the next and previous caches that have a copy, called the forward and
backward pointers, respectively (see figure 14).

On a read fault:

30

• the local node sends a request to the home memory to find out the
identity of the head node of the linked list, if any, for that block;

• if the head pointer is null (no current sharers), the home replies with
with the data;

• if the head pointer is not null, then the requestor must be added to
the list of sharers; the home responds to the requestor with the head
pointer; the requestor then sends a message to the head node, asking
to be inserted at the head of the list and hence to become the new
head node; the data for the block is provided by the home if it has the
latest copy or by the head node, which always has the latest copy (is
the owner) otherwise.

On a write fault:

• the writer again obtains the identity of the head node, if any, from the
home;

• it then inserts itself into the list as the head node as before; if the writer
was already in the list as a sharer and is now performing an upgrade, it
is deleted from its current position in the list and inserted as the new
head;

• following this, the rest of the distributed linked list is traversed node
by node to fin and invalidate successive copies of the block; acknowl-
edgments for these invalidations are sent to the writer.

Write backs or other replacements from the cache also require that the node
delete itself from the sharing list, which means communicating with the nodes
that are before and after it in the list.
Cache-based schemes solve the directory overhead problem found in memory-
based schemes. Every block in main memory has only a single head pointer
and few state bits. The number of forward and backward pointers is propor-
tional to the number of cache blocks in the machine, which is much smaller
then the number of memory blocks. However, manipulating insertion in and
deletion from distributed linked lists can lead to complex protocol imple-
mentations. These complexity issues have been greatly alleviated by the
formalization and publication of a standard for a cache-based directory or-
ganization and protocol: the IEEE 1596-1992 Scalable Coherent Interface
(SCI) standard, presented in [5].

31

L h d
1: request

3: request

2: id

4a:

4b: datA

update

(a) Strict request-response

L h d

1: request 2: request
forwarding

4: data
3: datA +
update

(b) Intervention forwarding

L h d3a:

3b: data

update

1: request 2: request
forwarding

(c) Reply forwarding

Figure 15: Reducing interprocessor communications in a flat, memory-based
protocol through forwarding

Flat protocol optimizations

The major performance goal at the protocol level is to reduce the number
of interprocessor communications generated by a node as a result of a cache
fault.
Consider a read fault to a remotely allocated block that is dirty in a third
node in a flat, memory-based protocol. The strict request-response option
described earlier is shown in figure 15(a). The home responds to the requestor
with a message containing the identity of the owner node. The requestor then
sends a request to the owner, which replies to it with the data. The owner
also sends a “revision” message to the home, which updates memory with
the data and sets the directory state to be shared.

The number of interprocessor communications can be reduced by forward-
ing of the request from the local node to the dirty node. In particular, the
home does not respond to the requestor but simply forwards the request to
the owner, asking it to retrieve the block from its cache. As shown in figure
15(b), the owner then replies to the home with the data or an acknowledg-
ment, at which time the home updates its directory state and replies to the
requestor with the data.
A more efficient method is reply forwarding (figure 15(c)), where when the

32

h s s

1: invalidation

5: invalidation

s

3: invalidation

2: ack

6: ack
4: ack

(a) basic mechanism

h s s

1: invalidation

3a: invalidation

s

2a: invalidation

2b: ack

4: ack
3B: ack

(b) forwarding

h s s

1: invalidation

3: invalidation

s

2: invalidation

4: ack

(c) forwarding with a single ack

Figure 16: Reducing interprocessor communications in a flat, cache-based
protocol

home forwards the request message to the owner node, the message contains
the identity of the requestor and the owner replies directly to the requestor
itself. The owner also sends a revision message to the home so that the mem-
ory and the directory can be updated.
Similar techniques can be used also to reduce the number of interprocessor
communications in flat, cache-based schemes when the copies of a block must
be invalidated after a write request. In the strict request-response case (see
figure 16(a)), every node includes in its acknowledgment the identity of the
next sharer on the list, and the home then sends that sharer and invalidation.
The total number of transactions in the invalidation sequence is 2s, where s
is the number of the sharers.

Figure 16(b) show how a generic node in the list, when receive an in-
validation request, can forwards the invalidation to the next sharer and in
parallel sends an acknowledgment to the home.
The number of interprocessor communications can also be reduce if only the
last sharer in the list sends a single acknowledgement telling the home that
the sequence is done, as shown in figure 16(c).

33

Correctness of protocols

As we have seen, in directory-based mechanism is not necessary to know
the exact status of each copy of a block, in fact, few information is sufficient
at the home node, which are a simply main memory’s view, which allow the
protocol to determine what actions take in order to ensure consistency. Since
the nodes communicate through interprocessor communications to execute
the actions described by the protocol, the will be periods when a directory’s
knowledge of a cache state is incorrect since the cache state has been modified
but notice of the modification has not reached the directory.
The problem, caused by the distribution of the state, must be resolved; in
fact, as a result of a subsequent request for access to the same block, this can
handled by the home node using information not yet updated, could affect
the accuracy the mechanism adopted for consistency.
Several types of solutions can be used to solve this problem, most of them use
additional directory states called busy states or pending states. A block being
in busy state at the directory indicates that a previous request that came
to the home for that block is still in progress and has not been completed.
When a new request comes to the home and finds the directory state to be
busy, coherence may be maintained by one of the following mechanisms.

• Buffer at the home. The request may be buffered at the home as a
pending request until the previous request that is in progress for the
block has completed, regardless of whether the previous request was
forwarded to a dirty node or whether a strict request-response protocol
was used.

• Buffer at the local node. Pending request may be buffered not only
at the home but also at the requestors themselves, by constructing a
distributed linked list of pending requests. This is a natural extension of
a cache-based approach, which already has the support for distributed
linked lists. This mechanism is used in the SCI protocol (see [5]).

• NACK. An incoming request may be NACKed (refused) by the home,
for example by sending a negative acknowledgment to the requestor.
The request will be retried later by unit W of the requestor.

• Forward to the dirty node. If the directory state is busy because a
request has been forwarded to a dirty node, subsequent requests for
that block are not buffered at the home or NACKed. Rather, they too
are forwarded to the dirty node, which maintains the pending requests.
If the block in the dirty node leaves the dirty state before a forwarded
request reaches it (for example, due to a write back), then the request

34

Processing
nodes

L1 directory

L2 directory

A

A

A

b

b

b

Figure 17: Organization of hierarchical directories

may be NACKed by the dirty node and retried. This approach was
used in the Stanford DASH protocol, presented in [7].

These techniques These techniques are not sufficient to ensure that the
state transitions of a generic memory block takes place in an atomic way.
As explained in section 2.1.1, in snoopy-based cache coherence techniques,
atomicity is provided by the bus; whereas in directory-based techniques is
not so easy to ensure this property. In fact, when a read exclusive request of
a block occurs, it is necessary the home node guarantees an atomic access to
the requestor. To do this, it is possible to adopt solutions that temporarily
block access requests to the memory module from other nodes, until all the
necessary invalidations were not performed.

2.2.2 Hierarchical

In hierarchical schemes, the source of directory information is not known a
priori. In fact, the directory information for each block is logically organized
as a hierarchical data structure, a tree. The processing nodes, each with its
portion of memory, are at the leaves of the tree. The internal nodes of the
tree are simply hierarchically maintained directory information for the block:
a node keep track of whether each of its children has a copy of a block, as
shown in figure 17.

Upon a fault, the directory information for the block is found by traversing
up the hierarchy level by level through interprocessor communications until
a directory node is reached that indicates its subtree has the block in the

35

appropriate state. Thus, a node in the system not only serves as a leaf node
for the block it contains but also stores directory information as an internal
tree node for other blocks.
More detail:

• a read fault flows up the hierarchy either until a directory indicates
that its subtree has a copy (clean or dirty) of the memory block being
requested or until the request reaches the directory that is the first
common ancestor of the requesting node and the home node for that
block, and that directory indicates the block is not dirty outside that
subtree; the request then flows down the hierarchy to the appropriate
processing node to pick up the data; the data reply follows the same
path back, updating the directories on its way; if the block was dirty,
a copy of the block also finds its way to the home node;

• a write fault flows up the hierarchy until it reaches a directory whose
subtree contains the current owner of the requested memory block; the
owner is either the home node, if the block is clean, or a dirty cache;
the request travels down to the owner to pick up the data, and the
requesting node becomes the new owner; if the block was previously in
clean state, invalidations are also propagated through the hierarchy to
all nodes caching that memory block; finally, all directories involved in
the preceding memory operation are updated to reflect the new owner
and the invalidated copies.

Hierarchical schemes are not so popular on modern systems due to their
performance, in many cases worse compared to the flat schemes.

2.3 Hybrid approaches

An alternative solution is to provide a two-level protocol hierarchy. Each
node of the machine is itself a multiprocessor. The aches within a node are
kept coherent by one coherence protocol called the inner protocol. Coherence
across nodes is maintained by another , possibly different protocol called the
outer protocol. Usually, an adapter unit is used to represent a node to the
outer protocol.

A common organization is for the outer protocol to be a directory protocol
and the inner one to be a snooping protocol, as presented in [8] and as shown
in figure 18(b). However, other combinations such as snooping-snooping,
directory-directory and directory-snooping may be used (see figures 18(a),
18(c) and 18(d) respectively).

36

M snooping
adapter

P

c

P

c

SB

Msnooping
adapter

P

c

P

c

SB

SNOOPY BUS

(a) Snooping-snooping

interconnection structure

M
+

dir
w

P

c

P

c

SB

M
+

dir
w

P

c

P

c

SB

(b) Snooping-directory

M

directory adapter

P

c

P

c

interconn. struct.

w M w M

directory adapter

P

c

P

c

interconn. struct.

wMw

interconnection structure

(c) Directory-directory

M

snooping adapter

P

c

P

c

interconn. struct.

w M w M

snooping adapter

P

c

P

c

interconn. struct.

wMw

snoopy bus

(d) Directory-snooping

Figure 18: Some possible organizations for two-level cache-coherent systems

37

References

[1] Anant Agarwal, Richard Simoni, John Hennessy, and Mark Horowitz.
An evaluation of directory schemes for cache coherence. In ISCA ’98: 25
years of the international symposia on Computer architecture (selected
papers), pages 353–362, New York, NY, USA, 1998. ACM.

[2] J.-L. Baer and W.-H. Wang. On the inclusion properties for multi-
level cache hierarchies. In ISCA ’88: Proceedings of the 15th Annual
International Symposium on Computer architecture, pages 73–80, Los
Alamitos, CA, USA, 1988. IEEE Computer Society Press.

[3] Bin feng Qian and Li min Yan. The research of the inclusive cache
used in multi-core processor. In Electronic Packaging Technology High
Density Packaging, 2008. ICEPT-HDP 2008. International Conference
on, pages 1 –4, 28-31 2008.

[4] Anoop Gupta, Wolf dietrich Weber, and Todd Mowry. Reducing Mem-
ory and Traffic Requirements for Scalable Directory-Based Cache Co-
herence Schemes. In In International Conference on Parallel Processing,
pages 312–321, 1990.

[5] Davib B. Gustavson. The Scalable Coherent Interface and Related Stan-
dards Projects. IEEE Micro, 12(1):10–22, 1992.

[6] Daniel Hackenberg, Daniel Molka, and Wolfgang E. Nagel. Comparing
cache architectures and coherency protocols on x86-64 multicore SMP
systems. In MICRO 42: Proceedings of the 42nd Annual IEEE/ACM In-
ternational Symposium on Microarchitecture, pages 413–422, New York,
NY, USA, 2009. ACM.

[7] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Anoop Gupta,
and John Hennessy. The directory-based cache coherence protocol for
the DASH multiprocessor. In ISCA ’90: Proceedings of the 17th annual
international symposium on Computer Architecture, pages 148–159, New
York, NY, USA, 1990. ACM.

[8] Tom Lovett and Russell Clapp. STiNG: a CC-NUMA computer sys-
tem for the commercial marketplace. SIGARCH Comput. Archit. News,
24(2):308–317, 1996.

[9] Edward M. McCreight. The Dragon Computer System: An Early
Overview. Technical report, Xerox Corporation, Polo Alto Research
Center, Palo Alto, Ca., 94304, December 7, 1984.

38

[10] Mark S. Papamarcos and Janak H. Patel. A low-overhead coherence
solution for multiprocessors with private cache memories. In ISCA ’84:
Proceedings of the 11th annual international symposium on Computer
architecture, pages 348–354, New York, NY, USA, 1984. ACM.

[11] P. Sweazey and A. J. Smith. A class of compatible cache consistency
protocols and their support by the IEEE futurebus. In ISCA ’86: Pro-
ceedings of the 13th annual international symposium on Computer archi-
tecture, pages 414–423, Los Alamitos, CA, USA, 1986. IEEE Computer
Society Press.

39

