High Performance Computing Systems and Enabling Platforms

Marco Vanneschi

Department of Computer Science, University of Pisa
Master Program (Laurea Magistrale) in Computer Science and Networking

High Performance Computing Systems and Enabling Platforms

Marco Vanneschi

Course Introduction
My activity

• Research area
 – Computer Architecture
 – Parallel and Distributed Processing, High Performance Computing
 – Parallel Programming Models and Tools
 – Programmability of various HPC platforms
 • Multiprocessor, Cluster, Grid Computing, Multi-core, Pervasive Computing
 – Coordination of some National and European Projects (basic research and industrial research)

• Research group
 – Co-led with Prof. Marco Danelutto
 – Laboratory of Parallel Architectures

• Strong relationship research - teaching
This course (acronym: SPA)

My Personal Page: www.di.unipi.it/~vannesch section: Teaching

Link in DidaWiki to my Personal Page:
http://www.cli.di.unipi.it/doku/doku.php/magistraleinformaticanetworking/spa/start

• Fundamental course of *Laurea Magistrale in Computer Science and Networking*, 1st Year

• In common with *Laurea Magistrale in Informatica*
 – complementary course (study plan in Distributed Systems)

• ASE (vecchio ordinamento, 9 CFU): 6 CFU di SPA + 3 CFU di integrazione (vedi in seguito)
Laurea magistrale in Informatica e Networking (WIN classe 18)

SPA

6 CFU = 48 hours (12 weeks)

CREDIT DEFINITION:
1 CFU = 25 hours = 8 hours for lectures / class activities (lab, practical, etc) + 17 hours for individual study
Contents

1. Objectives, motivations, approach
2. An informal presentation of some concepts and technologies
3. Background and prerequisites
4. Course program
5. Course material/notes
6. Exam modality and working approach
Contents

1. Objectives, motivations, approach
2. An informal presentation of some concepts and technologies
3. Background and prerequisites
4. Course program
5. Course material/notes
6. Exam modality and working approach
Course objectives

• Provide a solid knowledge framework of concepts and techniques in high-performance computer architecture
 – Organization and structure of enabling platforms based on parallel architectures
 – Support to parallel programming models and software development tools
 – Performance evaluation (cost models)

• Methodology for studying existing and future systems

• Technology: state-of-the-art and trends
 – Parallel processors
 – Multiprocessors
 – Multicore / manycore / … / GPU
 – Shared vs distributed memory architectures
 – Programming models and their support
 – General-purpose vs dedicated platforms
Motivations

• Basically, the same motivation discussed in “Distributed Systems: Paradigms and Models” (Prof. Marco Danelutto):
 – evolution of computer technology towards parallelism and HPC
 • Multi/many core
 • Large cluster, cloud, ...
 • Heterogeneous large-scale enabling ICT platforms
 • Embedding

• Increasing maturity with respect to “hardware-software relationship”
 – Both Technology Push and Technology Pull

• Language-driven architectural approaches

• Concurrency and parallelism as first-class citizens in application development

• In our Master: HPC is a fundamental methodology and technology for integrated ICT infrastructures and applications
The concept of **Enabling Platform**: strong relationship and integration between architectures and applications

- Computing architectures are NOT “boxes and wires”

- **Computer Science approach**
 - Computing architecture has its own concepts, principles, models, and techniques
 - Conceptual framework in common with the other disciplines of Computer Science:
 - Programming languages, algorithms, computability and complexity, ...
Contents

1. Objectives, motivations, approach
2. An informal presentation of some concepts and technologies
3. Background and prerequisites
4. Course program
5. Course material/notes
6. Exam modality and working approach
HPC enabling platforms

Shared memory multiprocessors
 - Various types (SMP, NUMA, ...)

- From simple to very sophisticated memory organizations
- Impact on the programming model and/or process/threads run-time support
HPC enabling platforms: shared and distributed memory architectures

Shared memory multiprocessor

“Limited degree” Interconnection Network ("one-to-few")

Distributed memory multicomputer: PC cluster, Farm, Data Centre, ...

Instruction Level Parallelism CPU (pipeline, superscalar, multithreading, ...)

CPU technology evolution and multicore

Multiprocessor on single chip

- “Dramatic revolution” for ITC industry: programmability issues
- Computer providers support: from sequential programming to parallel programming
- Also: NETWORK PROCESSORS with multicore technology
Multicore technology examples

SUN Niagara 3
Multicore technology examples

IBM Power 7
Multicore technology examples

IBM CELL BE
(out of production ...)

HPC enabling platforms

Homogeneous Clusters, in general with multiprocessor/multicore nodes (SMP, NUMA, ...)

Heterogeneous Clusters

Virtual Private Networks: Farms, Data Centres

Large Scale Platforms (LAN, MAN, WAN): Grids, Clouds, ...
Large scale platforms (Grids and much more)

Added value: Quality of Service (QoS)

- Distributed/Web Computing: Objects / Component Software Technology
- High-performance Computing, Cluster Computing
- Cooperation and Virtual Organizations, Pervasive Computing
- Knowledge Management and Data Intensive Computing

Example of heterogeneous distributed HPC platform: Pervasive Grid

An **integrated** system composed of central servers and services, fixed and mobile decentralized nodes, various kind of networks.

A **distributed application**, *e.g.* emergency management, must be able to exploit **all** the processing **and** communication resources at best.
Example of Pervasive Grid application

Flood management

Water level, speed, soil status, ...

Along the river, ...

Environmental Sensed Data

Precipitation Puntual Data

Precipitation Distributed Data (e.g. Satellitar Images)

Precipitation in time and space, from satellites, meteo radars, rain gauges, ...

GIS Data

Spatial Data

Predicted Precipitation Time Series

Forecasting Results

Data Dissemination

Data Mining

Visualization
Post-processing (non trivial)

Clients

Authorities, supervisors, observers, rescuers, police, firemens, ...

Hydrological Model: flood wave

Flood Forecasting Model

Decision Support System

Data- and computation-intensive activities: OFF-LINE and REAL-TIME

Meteorological Prediction Model

Geographic Information System

Sensor Networks
Off-line vs real-time adaptive processing

The typical off-line, routinely tasks involve central servers and some predefined networks. Mobile remote devices are used mainly for communication and visualization.

In emergency situations, tasks can be re-allocated to remote nodes/devices and mobile networks in real-time (e.g. central resources are disconnected or communication is inefficient).

Are remote nodes/devices and networks able to process high-performance tasks?
The impact of multicore on next-generation dedicated and mobile technology

Embedding into mobile and/or wearable intelligent devices

On-chip Multiprocessor

Data & Knowledge Server

Wearable

High-performance computing on a distributed collection of “simple” remote nodes/devices is feasible (and can be very efficient)
Contents

1. Objectives, motivations, approach
2. An informal presentation of some concepts and technologies
3. Background and prerequisites
4. Course program
5. Course material/notes
6. Exam modality and working approach
Basic background and prerequisites

• An undergraduate-level course on *structured* computer architecture
 – Firmware level structuring
 – Assembler level, CPU architecture, compiling
 – Memory hierarchies and caching
 – Interrupt handling, exception handling
 – Process level, addressing space, low level scheduling, interprocess communication
 – Input/Output processing

• Few books adopt a *structured* approach:
 – Tanenbaum: in principle, some parts only
 – Patterson-Hennessy: mainly description of existing technologies (few concepts)

• In Pisa: course “Computer Architecture”

• Some initial lectures will review the basic concepts of the *structured* approach
 – Students are strongly invited to attend this part in a very critical manner
Background from other courses of MCSN

• Course by Prof. Marco Danelutto (Distributed Systems: Paradigms and Models)
 – Structures of parallel computations
 – Performance measures and cost models
 • Service time / bandwidth, latency, completion time, efficiency, scalability
 – Basic mechanisms for process cooperation (messages, shared variables)
 – Parallelism forms / paradigms, structured parallelism
 • Stream-parallel pipeline
 • Stream-parallel farm
 • Data-flow
 • Data-parallel map, reduce, parallel prefix
 • Data-parallel with stencils
 – Client-server computations
 – Impact of service-time and latency on client service-time

• Course of Advanced Programming
• Basic elements of Queueing Theory
• Basic elements of Networking
Contents

1. Objectives, motivations, approach
2. An informal presentation of some concepts and technologies
3. Background and prerequisites
4. Course program
5. Course material/notes
6. Exam modality and working approach
Course Program

PART 1 (~ 1/4)

1. Prerequisites revisited
 – Firmware structuring; processors, memory hierarchies and caching; assembler level and compiler optimizations, performance parameters; process cooperation and implementation

2. Run-time support to concurrency mechanisms
 – Structured interpretation of process communication and sharing

3. Instruction level parallelism
 – Elements of pipeline and superscalar CPUs, cost models, compiler optimizations

PART 2 (~ 3/4)

4. Shared memory architectures
 – SMP, NUMA, …, interconnection networks, support to concurrency mechanisms, cost models, static and dynamic optimizations, parallel application benchmarks

5. Distributed memory architectures
 – Cluster, MPP, …, interconnection networks, support to concurrency mechanisms, cost models, static and dynamic optimizations, parallel application benchmarks

6. Multicore architectures
 – Current status and trends of single-chip shared/distributed memory architectures
Further MCSN courses on these subjects

• Complements of Distributed Enabling Platforms (CAP)
• Programming Tools for Parallel and Distributed Systems (SPD)
 – For the current year only (free-choice exam): merged into the same course (formally: SPD)
 • Grid and Cloud,
 • Distributed Operating Systems,
 • Tools and Libraries for Parallel and Distributed Machines (MPI and other standards or commercial products; ASSIST–University of Pisa and possibly other research tools)
 • Virtualization,
 • Scheduling.
 – Next year (study plan): 2 distinct courses (CAP: 6 CFU, SPD: 9 CFU)
• Parallel and Distributed Algorithms Next year

To increase the knowledge of some notable application paradigms:
• Numerical Techniques and Applications (TNA)
• Network Optimization Methods Next year
• Data Mining Techniques Next year
Contents

1. Objectives, motivations, approach
2. An informal presentation of some concepts and technologies
3. Background and prerequisites
4. Course program
5. Course material/notes
6. Exam modality and working approach
The lectures

• Slides and blackboard

• Slides for
 – (part of) course material
 – lecture outline

• Blackboard

• ~ for each slide, where necessary or convenient: further explanation / discussion using the blackboard
Course Material

- My page:
 - www.di.unipi.it/~vannesch section: Teaching (*)
 - Link in DidaWiki: http://www.cli.di.unipi.it/doku/doku.php/magistraleinformaticanetworking/spa/start

- Lecture Notes
 - Slides (*)
 - Documents (*)

- Papers and selected book chapters

- M. Vanneschi, “Architettura degli Elaboratori”, PLUS, 2009
 - Part IV
 - English version: next year
 - Some parts will by translated in English during the course (*)

- Reference Books
Contents

1. Objectives, motivations, approach
2. An informal presentation of some concepts and technologies
3. Background and prerequisites
4. Course program
5. Course material/notes
6. Exam modality and working approach
Exam modality

For all students:

Written test + oral test (in English or in Italian)

Written test: explanation/discussion of concepts and techniques of the course, not necessarily focused on small exercises. Emphasis will be put on the knowledge of methodologies and their application, as well as on the synthesis capability and on the student’s ability to establish the proper relationships between the various parts of the course.

Optional: a **report** on a specific topic

- individual written report, maximum 2 persons
- No intermediate tests
- Report to be submitted a certain time in advance wrt the exam date.

- **ASE**: see a subsequent slide.

- **Registration** to the exam on the Official Site of Corso di Laurea: http://compass2.di.unipi.it/didattica, section Laurea Magistrale in Informatica e Networking, subsection “orari”
Exam modality

Report

• Some literature material (e.g. one/some papers) is assigned to the student
 – existing parallel machines / multicore, or existing projects,
 – specific techniques and/or technologies on topics of interest.

• The assigned material must be studied and interpreted according to the course contents, methodology and approach.

• The report must be written in a didactic style, as it were a book chapter for students (“student-proof”)
 – “if an author is not able to explain a certain thing in an understandable and complete manner, then certainly such thing is not clear to the author himself”

• Literature assigned during the first 2-3 weeks of the course
Esame di ASE (9 CFU), laurea specialistica vecchio ordinamento:

- **SPA** (6 CFU)

- + **integrazione 3 CFU** sulla parte delle metodologie di parallelizzazione (Libro Vanneschi, Cap. X)

- **Modalità di esame**: scritto tradizionale e orale

- All’atto dell’iscrizione: indicare ASE
Working approach

• As in any other course, it is fundamental to acquire skills and capabilities in concepts and principles, besides knowing the technologies.

• **Critical aptitude** must be properly developed.

• **Interaction** with the teacher is strongly encouraged
 – Questions during the lectures
 – **Question time** ("orario di ricevimento") (in Italian for Italians)
 • Wednesday, 14:30 – 17:30, in my room
 • *or by appointment in case of collision with other courses.*
Laurea magistrale in Informatica e Networking (WIN classe 18)

Lunedì

<table>
<thead>
<tr>
<th></th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SPA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEIICP</td>
<td>RMD</td>
<td>RMD</td>
<td>TCO</td>
<td>TCO</td>
<td>SPA</td>
<td>SPA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Martedì

<table>
<thead>
<tr>
<th></th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TNA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEIICP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TNA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNR</td>
<td>CPA</td>
<td>CPA</td>
<td>SPD</td>
<td>SPD</td>
<td></td>
<td></td>
<td>CPA</td>
<td>CPA</td>
<td>SPD</td>
<td>SPD</td>
</tr>
<tr>
<td>Ing1</td>
<td>ACS</td>
<td>ACS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IT</td>
<td>IT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mercoledì

<table>
<thead>
<tr>
<th></th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td></td>
</tr>
<tr>
<td>N1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TNA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEIICP</td>
<td>RMD</td>
<td>RMD</td>
<td>TCO</td>
<td>TCO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CPA</td>
<td>CPA</td>
<td>SPD</td>
<td>SPD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ing1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IT</td>
<td>IT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Giovedì

<table>
<thead>
<tr>
<th></th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SPA</td>
<td>SPA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEIICP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TCO</td>
<td>TCO</td>
<td>RMD</td>
<td>RMD</td>
<td></td>
</tr>
</tbody>
</table>

Venerdì

<table>
<thead>
<tr>
<th></th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td></td>
</tr>
<tr>
<td>N1</td>
<td>TNA</td>
<td>TNA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNR</td>
<td>SPD</td>
<td>SPD</td>
<td>CPA</td>
<td>CPA</td>
<td></td>
<td></td>
<td>ACS</td>
<td>ACS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ing1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IT</td>
<td>IT</td>
<td>ACS</td>
<td>ACS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ing2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IT</td>
<td>IT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

14:30 - 17:30, my room (Dept)
or by appointment in case the student attends the Wednesday afternoon lectures
Good Luck!