Today’s lecture

1. Random functions and Bayesian regression
2. Gaussian Processes
3. Bayesian prediction with GPs
Bayesian regression revisited

- We saw yesterday that Bayesian linear regression places a (Gaussian) prior over the weights vector.
- Hence, the regression line is a *random line*: the output prediction at any point is a Gaussian random variable.
- This concept can be generalised: taking linear combinations of basis functions with (Gaussian) random coefficients leads to a (Gaussian) random function.
- Since Bayesian estimation effectively regularises, we can avoid the pitfalls of overfitting in this way.
Random functions terminology

- A random function is an infinite collection of random variables indexed by the argument of the function.
- A popular alternative name is a stochastic process.
- When considering the random function evaluated at a (finite) set of points, we get a random vector.
- The distribution of this random vector is called finite dimensional marginal.
Important exercise

Let $\phi_1(x), \ldots, \phi_N(x)$ be a fixed set of functions, and let $f(x) = \sum w_i \phi_i(x)$. If $\mathbf{w} \sim \mathcal{N}(0, I)$, compute:

1. The single-point marginal distribution of $f(x)$
2. The two-point marginal distribution of $f(x_1), f(x_2)$
Obviously the distributions are Gaussians

Obviously both distributions have mean zero

To compute the (co)variance, take products and expectations and remember that \(\langle w_i w_j \rangle = \delta_{ij} \)

Defining \(\phi(x) = (\phi_1(x), \ldots, \phi_N(x)) \), we get that

\[
\langle f(x_i)f(x_j) \rangle = \phi(x_i)^T \phi(x_j)
\]
Generalising the exercise to more than two points, we get that any finite dimensional marginal of this process is multivariate Gaussian.

The covariance matrix of this function is given by evaluating a function of two variables at all possible pairs.

The function is defined by the set of basis functions

\[k(x_i, x_j) = \phi(x_i)^T \phi(x_j) \]

The covariance matrix is often called *Gram matrix* and is (necessarily) symmetric and positive definite.

Bayesian prediction in regression then is essentially the same as computing conditionals for Gaussians (more later).
Main limitation of Bayesian regression

- Choice of basis functions inevitably impacts what can be predicted.
- Suppose one wishes the basis functions to tend to zero as $x \to \infty$.
- Then, necessarily, very large input values will have predicted outputs near zero with high confidence!
- Ideally, one would want a prior over functions which would have the same uncertainty everywhere.
We have seen that the variance of a random combination of functions depends on space as $\sum \phi_i^2(x)$.

Given any compact set, (e.g. hypercube with centre in the origin), we can find a finite set of basis functions s.t. $\sum \phi_i^2(x) = \text{const}$ (partition of unity, e.g. triangulations or smoother alternatives).

We can construct a sequence of such sets which covers the whole of \mathbb{R}^D in the limit.

Therefore, we can construct a sequence of priors which all have constant prior variance across all space.

Covariances would still be computed by evaluating a Gram matrix (and need not be constant).
The argument before shows that we can put a prior over infinite-dimensional spaces of functions s.t. all finite dimensional marginals are multivariate Gaussian.

The constructive argument, often referred to as *weights space view*, is useful for intuition but impractical.

It does demonstrate the existence of truly infinite dimensional Gaussian processes.

Once we accept that Gaussian processes exist, we are better off proceeding along a more abstract line.
A Gaussian Process (GP) is a stochastic process indexed by a continuous variable x s.t. all finite dimensional marginals are multivariate Gaussian.

A GP is uniquely defined by its \textit{mean} and \textit{covariance} functions, denoted by $\mu(x)$ and $k(x, x')$:

$$f \sim \mathcal{GP}(\mu, k) \leftrightarrow f = (f(x_1), \ldots, f(x_N)) \sim \mathcal{N}(\mu, K),$$

$$\mu = (\mu(x_1), \ldots, \mu(x_N)), \quad K = (k(x_i, x_j))_{i,j}$$

The covariance function must satisfy some conditions (Mercer’s theorem), essentially it needs to evaluate to a symmetric positive definite function for all sets of input points.
Covariance functions

- The covariance function encapsulates the basis functions used → it determines the type of functions which can be sampled
- The radial basis functions (RBF or squared exponential) covariance function
 \[k(x_i, x_j) = \alpha^2 \exp\left(-\frac{(x_i - x_j)^2}{\lambda^2}\right) \]
 corresponds to Gaussian bumps basis functions and yields smooth bumpy samples
- The Ornstein-Uhlenbeck (OU) covariance
 \[k(x_i, x_j) = \alpha^2 \exp\left(-\frac{|x_i - x_j|}{\lambda^2}\right) \]
 yields rough paths which are nowhere differentiable
- Both RBF and OU are stationary and encode exponentially decaying correlations
Observing GPs

- In a regression case, we assume to have observed the function values at some input values with i.i.d. Gaussian noise with variance σ^2.
- What is the effect of observation noise?
- Suppose we have a Gaussian vector $\mathbf{f} \sim \mathcal{N}(\mu, \Sigma)$, and observations $\mathbf{y} | \mathbf{f} \sim \mathcal{N}(\mathbf{f}, \sigma^2 I)$.
- Exercise: compute the marginal distribution of \mathbf{y}.
Predicting with GPs

- Suppose we have noisy observations y of a function value at inputs x, and want to predict the value at a new input x_{new}
- The joint prior probability of function values at the observed and new input points is multivariate Gaussian
- By Bayes’ theorem, we have

$$p(f_{new}|y) \propto \int df(x)p(f_{new}, f(x))p(y|f(x)) \quad (1)$$

where $f(x)$ is the vector of true function values at the input points

- Exercise: compute the distribution $p(f(x_{new})|y)$
- You will need the partitioned inverse formula (see http://en.wikipedia.org/wiki/Block_matrix_pseudoinverse)
Covariance parameters

- Covariance functions often depend on hyperparameters (e.g. the amplitude and lengthscale of the RBF covariance)
- These can be tuned by optimising the marginal likelihood (called type II maximum likelihood)

\[\mathcal{L} = \log \int df(x) p(f(x)) p(y|f(x)) = \log |(K+\sigma^2 I)| - y^T (K+\sigma^2 I)^{-1} y \]

- Usually gradient methods are used; Bayesian methods are complicated by the in general complex functional form (no conjugate prior)
Pitfalls of GP prediction

- Addition of a new observation *always* reduces uncertainty at all points \rightarrow vulnerable to outliers
- Optimisation of hyperparameters often tricky: works well if σ^2 is known, otherwise it can be seriously multimodal
- **MAIN PROBLEM:** GP prediction relies on a matrix inversion which scales cubically with the number of points!
- Sparsification methods have been proposed but in high dimension GP regression is likely to be tricky nevertheless