
DDT: A Distributed Data Structure for the Support
of P2P Range Query

Davide Carff, Massimo Coppola, Domenico Laforenza
ISTI,CNR

Via Moruzzi, Pisa, Italy
Email: {davide.carfi.massimo.coppola.domenico.laforenza}@istLcnr.it

Laura Ricci
Dipartimento di Informatica

Largo Bruno Pontecorvo, Pisa
Email: ricci@dLunipi.it

Abstract-This paper defines and evaluates a hierarchical
distributed data structure, Distributed Digest Trie, supporting
range queries in P2P systems. Providing efficient support for
these queries is currently a challenging research issue in the P2P
field, as classical approaches based on Distributed Hash Tables
(DHT) are often not suitable for this kind of queries, due to the
loss of locality introduced by the hashing function. Distributed
Digest Trie exploits the DHT only to define a uniform assignment
of logical identifiers to peers while each key is managed by the
peer publishing it. Each peer is paired with the leaf of the trie
corresponding to its logical identifier. An internal node of the
trie stores a digest summarizing the keys published by the peers
paired with the leaves of the tree rooted at that node. A proper
mapping function is defined to map the internal nodes of the
trie to the peers. The digests stored at the internal nodes are
exploited to guide the search process for the resolution of the
range query. Different aggregation techniques are proposed. A
set of experimental results compare these techniques, evaluate the
cost of dynamic updates of the data structure and the network
traffic generated by the method.

I. INTRODUCTION

The problem of resource discovery in massively distributed
environments is currently an active research area [1]. A support
for resource discovery is required, for instance, in Grids and in
distributed environments supporting collaborative computing.
Several recent proposals exploit the P2P computational model
to define a scalable resource discovery support. Most of them
are based on the Distributed Hash Table (DHT) approach,
which offers a simple put/get API for defining a distributed di
rectory service. Although several DHTs are currently available
[2], [3], this technology is still developing the functionalities
needed in order to support complex queries (range, multi
attribute or similarity queries) which are required by high level
applications/services.

Several extensions of the basic DHT model for the support
of range queries have been recently proposed [4]-[9]. Existing
approached may be classified as follows. A first set of propos
als [8] are based on the definition of a locality preserving hash
ing function which keeps the locality of the keys in order to
support range queries. The main drawback of these proposals
is that the load balancing properties of the DHT are no longer
guaranteed, as we sacrifice the uniformly scattering of keys
within the DHT. Other proposals [9] leverage a space filling
function to define a linearization of the multi dimensional
space of the resource attributes, so that the resulting space

Digital Object Identifier: 10.41OB/ICST. COLLABORATECOM2009. B356
http://dx.doi.org/10.410B/ICST.COLLABORATECOM2009.B356

can be easily mapped to the underlying DHT. Finally, some
approaches utilize the DHT as a communication substrate to
build a hierarchical distributed data structure. They enhance
the queries expressivity by maintenance a distributed index of
resources.

We propose the Distributed Digest Trie (DDT) a distributed
data structure which is based on a trie structure. The DDT im
proves the DHT query expressivity by providing the execution
of range queries on a single attribute.

A trie is a data structure based on a hierarchical tree
structure where each node corresponds to a distinct prefix of
the domain value and all descendants nodes share a common
prefix with the relative ancestors. DDT builds the distributed
trie on the DHT substrate, it exploits the DHT to define a
uniform assignment of peers identifiers. The alphabet of the
trie is based on the {O, I} peer identifiers symbols. In this
way we define a binary trie where each leaf represent a single
peer of the DHT network. The internal nodes of the trie are
partitioned among network peers by a mapping function. The
mapping function takes into account several issues like the
distribution of the trie, the workload or the reorganization
problems. While most approaches presented in the literature
are based on computationally expensive algorithms to keep
the distributed data structure consistent, as peer join and leave
the overlay, our proposal aims at keeping low the complexity
of join/update operations. We show that the worst case com
plexity of DDT join and update operations are logarithmically
bounded in the number of peers.

The DDT resources are kept by the peers, thus the queries
require a distributed exploration of the trie. DDT introduces
the concept of aggregation function in order to compute, on the
internal nodes of the trie, a digest of the resources published
in the lower levels. DDT defines several aggregate functions
allowing the appropriate summarization of different kinds of
resources. In this paper several aggregate functions are defined
and compared with each other, to evaluate their trade off
between accuracy and space requirements. At the best of our
knowledge, our proposal is the first defining an aggregation
trie in a P2P environment.

The paper is organized as follows. Sect.II presents the main
proposals currently in the literature that relate to our work.
Sect.Ill introduces the main characteristics of DDT, while
Sect.IV and Sect.V respectively give a more accurate definition

of the Digest Functions and the Mapping Functions exploited
by the DDT. The main algorithms defined to support DDT
operations are discussed in Sect VI. Section VII presents
a set of experimental results. Finally, Sect.VIII reports our
conclusions and discusses future works.

II. RELATED WORK

Nowadays structured P2P networks are a good choice
for sharing resources over massively distributed environment.
Several structured overlays [2], [3], [10] have recently been
proposed which adopt and extend Distributed Hash Table
(DHT) mechanisms to support scalable search of resources.
Among the numerous new approaches (see e.g. [1]) we discuss
here those more closely related to our work. In particular,
the CONE approach [11] is described in Sect. IV. The main
drawback of the mentioned systems is that, while they define a
scalable support for "exact-match" queries, they do not offer
a proper support for more complex ones, like multi attribute
range queries. In this section we discuss the main proposals
presented into the literature for the support of this kind of
query and compare the proposals with respect to the following
issues:

• Balancing of the workload: the load for storing and
searching resources should be balanced among the peers;

• Dynamic Resources: the system should minimize the
amount of updates in the case of resource modification.

• Space Requirement: each peer should reduce the size
of the data structures required to store and retrieve the
resources, e.g. the size of the routing tables.

BAlanced Tree Overlay Network, Baton [4], is a structured
P2P system which supports the execution of unidimensional
range queries. Baton maintains a distributed B-tree. Each
peer of the network is paired with a range of resources
corresponding to a node of the tree. When a new peer P
joins Baton, the peer builds a routing table to store the links
to other peers managing the tree. The routing tables are
stabilized to guarantee that the tree remains balanced. The
stabilization process is also required when a node changes the
value of its resource. This approach guarantees both a good
balance of the load and a that the execution of the "range
queries" has a complexity which is logarithmic in the depth
of the tree. The main drawback of the Baton approach is
the stabilization process which is exploited when a new peer
joins the network/updates its resource to guarantee that the
distributed tree remains balanced. The overall performance
can be degraded, due to this process, when the amount of
updates is high. Our DDT proposal distinguishes from Baton
as we explicitly aim at a good trade-off between the efficient
management of resource dynamicity and the overhead of
keeping the workload well balanced.

[7] presents a proposal based on a binary tree, the Range
Search Tree (RST). The RST builds a distributed tree over the
peers in the overlay whose goal is to support range queries.
Each leaf of the tree is paired with a single value and each
internal node stores the union of ranges of values paired with
its children. Each peer manages one or more nodes of the tree

Digital Object Identifier: 10.41OB/ICST. COLLABORATECOM2009. B356
http://dx.doi.org/10.410BI/CST.COLLABORATECOM2009.B356

according to a "Load Balancing Matrix", (LBM). The LBM
keeps track of the queries and of the publication workload
for a specific resource. The matrix can be retrieved from a
special peer node called "head node", or a discovery algorithm
can be used to approximate it to avoid overloading the head
node. When a peer joins the network it is paired with all
the nodes belonging to a Path into RST, i.e, a set of RST
nodes where the value published by the peer falls into. The
concept key is to select only a subset of the nodes from the
path. This set of nodes is called "band" and it is dynamic
calculated in accordance with the range queries workload. The
band is also stored as the LBM and is updated through the
"Path Maintenance Protocol" (PMP). A RST search operation
consists in retrieving the band of the published value, and
afterwards in computing a decomposition of the node set of
the range query into a set of RST nodes to query separately.
The main drawbacks of the RST proposal are related to
the LBM/band maintenance and to the resource dynamism
management. In the first case, the overloading of the head node
degrades the performance of the discovery. In addition the
Path Maintenance Protocol increases the message traffic in the
network. The last critical point is the overhead of continuous
remove and registration operations in the presence of a high
level of resources updates.

In the previous proposals the resource dynamism is one
of main limitations. For this reason the current literature
proposes further P2P approaches whose goal is to improve
the management of dynamic resources. The Range Category
Tree (RCT) [6] is a distributed data structure supporting the
execution of multi attribute range queries and devised in the
Grid computing context. Range Category Tree (RCT) exploits
a balanced binary tree structure and organizes the resources
on a Primary Attribute (PA) concept. A primary attribute
is an attribute which best describes the characteristic of the
resource and for each primary attribute a different RCT is
built. Unlike the previous RST proposal in the RCT each
nodes manages a specific range of PA and the range value
distribution has a "load-aware self-adaptation". The authors
show how to enable the resource discovery across the different
RCTs through a RCT Index Service (RIS) network as an upper
layer. The RISs can support a service retrieval like a UDDI
registry.

Finally, The Tree Vector Indexes, (TVI) [5] is P2P system
that allows to execute range query and manages efficiently the
resources dynamism. TVI uses an index to route the query
toward the areas of the network where matches can be found.
The peers are connected through an undirected spanning tree
and each connection link is paired with a data structure that
is a bit vector. The bit vector drives the query process and it
can be efficiently updated when a resource is modified. The
TVI can represent an excellent strategy for dynamic content
retrieval on P2P networks, but its performance evaluation is
not yet clearly related to the topological characteristics of the
network overlay.

Map(n) =

III. DISTRIBUTED DIGEST TRIE: GENERAL DEFINITIONS

The DDT exploits a uniform SHAl Hashing Function to
assign h-bits identifiers defined in the logical space S =
{O ... 2h- 1 } to the peers joining the structure. A trie over
the alphabet A = {O, I} of the identifiers is defined so that
each node of the trie corresponds to a prefix of the identifiers
defined in the logical space. A Distributed Hash Table is
exploited both to assign the identifiers of S to the peers and
to support their bootstrap on the overlay. Each peer is paired
with the leaf of the trie corresponding to its identifier.

In DDT each key is stored by the peer which publishes it.
This distinguishes DDT from the classical DHT approach,
where the key published by a peer may be mapped by
SHAl function to any peer through a specific DHT mapping
function.

In our approach, the leaves of the trie store the data
published by the peers, while each internal node stores a digest
summarizing the information stored at the leaves of the subtree
rooted at that node. The main purpose of the digest is to guide
the search of data satisfying the range queries submitted by the
peers. Each query is propagated bottom up starting from the
node submitting the query and the information stored at the
internal nodes is exploited to decide if a subtree may include
values matching the range defined by the query.

It is worth noticing that the update of a key in a leaf of the
trie may require updating the digest information in a subset
of the nodes on the path from that leaf to the root of the
trie. The definition of a proper Aggregation Function should
balance the level of approximation introduced by the digest
with the number of updates required when a key is modified.
It is worth noticing that, in any case, the number of updates
is bounded by the height of the trie. Section IV will discuss a
set of aggregation functions characterized by different levels
of approximation.

Each node n of the trie is assigned to a peer p by a proper
Mapping Function. The following definition introduces a
family of Mapping Functions which enables a straightforward
definition of the most important operations of DDT.

p : SHAl(p) = id 1\ I D(n) = id
if Is_Leaf(n)

p E {p' : SHAl(p') = id,
I D(n) = id', pre(id', id)}

if -,1 s_Leaf(n)

In the formula, SHAI is the hash function mapping a peer to
the logical space of the identifiers, and the remaining notation
is defined in table I, together with further definitions used in
the following.

According to the previous definition, each node of the trie
is mapped to a single peer while a peer possibly manages
a set of logical nodes of the trie. While the mapping of the
leaves to the peers is defined by their logical identifiers, the
mapping function chooses from a set of possible candidates
the peer to be paired with an internal node of the DDT. The
only restraint introduced by our definition of mapping is that,

Digital Object Identifier: 10.41OB/ICST. COLLABORATECOM2009. B356
http://dx.doi.org/10.410B/ICST.COLLABORATECOM2009. B356

Symbol Meaning
p, q peer of the DHT network
n node of the DDT trie
id peer identifier
h height of DDT trie
k resource compressor factor
m number of resource to summarize

Function Meaning
ID(n) prefix assigned to n by the trie
preiidi, ida) predicate true iff id1 is a prefix of id2
Is_Leaf(n) predicate true iff n is a leaf
Key(p) key published by p
Leaf(p) the leaf I of the trie such that ID(I)=SHAl(p)
Children(n) the set of children nodes of node n
Level(n) level of n in the DDT
Is_Leaf(n) predicate true iff n is a leaf

TABLE I
SYMBOLS AND FUNCTIONS

given an internal node n, I D (n) is a prefix of the identifier
of the peer paired with n. This restraint has been introduced
to make the bootstrap of the peers easier. As a matter of fact,
the previous definition guarantees that a peer p may choose
as bootstrap peer the one sharing the longest common prefix
with itself, and receive from this peer the information required
to correctly join the Digest Trie. As shown in Sect. VI, the
bootstrap peer can be detected by exploiting the DHT routing.

Different mapping functions will be introduced in Section V
each one taking into account different issues, like the balance
of the load among the nodes, the efficiency of the search
process and so on.

Each peer p stores, besides the key it publishes, the set
of digests paired with the logical nodes assigned to it and
a routing table whose structure is determined by the chosen
mapping. The routing table stores the IP Addresses of the
peers, instead of their logical identifiers. Each message can be
directly sent to its destination peer, saving the cost of DHT
routing. The overlay network connecting the peers is defined
by the links stored in the routing tables of the peers.

In DDT, the trie is visited bottom up starting from the leaf
of the DDT corresponding to the peer which has submitted the
query. Even if different strategies may be exploited to realize
a distributed visit of DDT, the main goal of our approach is
to avoid that the nodes at the upper levels of the trie receive
most queries so becoming a bottleneck of the system.

For this reason, when a peer receives a query it first
propagates the query to the subtrees rooted at the nodes
mapped to itself, before propagating the query to the upper
levels of the trie, The subtrees are chosen according to the
estimation of the matches which may be found for the query
in that subtree. This estimate is evaluated through the digest
associated to the root of a subtree. The accuracy of the digest
has a great impact on the efficiency of the search process.

Different strategies may be exploited to visit the subtrees.
For instance, subtrees may be ordered according to the matches
and then visited sequentially or a subset of the promising
peers may be visited in parallel. A proper balance between

the degree of parallelism and the amount of traffic generated
for a query should be properly defined.

An important issue is also the definition of a proper criterion
to decide when the propagation of the query should be stopped.
An approach based on the definition of a TTL for the query,
like the one exploited in Gnutella, is not suitable in our case.
Approaches based on the backward propagation of the query
matches should be avoided as well, because of the high level
of the generated traffic. Our approach will be described in
more details in Section VI

IV. THE AGGREGATION FUNCTIONS

This section presents several aggregation functions charac
terized by different degrees of approximation and of com
putational complexity. Since the main goal of Cone [11] is
to define a distributed support for queries such as "find k
resources whose value is > x", a distributed heap is defined
where the maximum function is exploited to aggregate the
values stored in each subtree. In this way, the maximum value
is always stored at the root of the tree and a query may be
solved by visiting the aggregation tree up to a node storing a
value greater than x. Further values matching the query may
be found on the way from this node to the root.

The main advantage of this approach is its low compu
tational complexity. Furthermore, a simple mapping of the
internal nodes of the aggregation tree to the peers may be
defined by assigning a node to the peer storing the aggregated
value. This is possible because the aggregate value always
equals one of the key published by the peers.

On the other way round, the Cone aggregation strategy is
not suitable for to support range queries. As a matter of fact,
a subtree may be cut off only if the maximum value stored
at its root is lower than the lower bound of the query, while
it returns no significative information if at least one key is
smaller than the maximum.

Bivectors have been exploited to implement routing indexes
[5] for unstructured networks. A bitvector is defined by
selecting k + 1 division points within the interval [l, u] of
keys values, l = Po < PI < ... < Pk = u such that [l, u] is
partitioned into k distinct intervals [Pi, Pi+I), i = 0, 1, ... k-1.
The digest summarizing the keys stored in a subtree S is
defined by the bitvector B = (bo, bl , ... , bk) such that b, = 1
if and only if exists a key in S belonging to [Pi, Pi+I).

The main advantage of this approach is the straightforward
implementation of the merge of a set of bitvectors which can
be computed by considering their bitwise disjunction. This
operation should be computed at each internal node n of
the Digest trie to define the bitvector associated with n as
a function of those associated to its child nodes.

On the other way round, the approximation introduced by
a bitvector may result too coarse to support the resolution
of a range query. As a matter of fact, a bitvector shows if
at least one key belongs to one of its intervals but it is not
able to return the number of keys included in that interval.
Furthermore, the approximation becomes less accurate as the
number of aggregations step increases, i.e, at the upper levels

Digital Object Identifier: 10.41OB/ICST. COLLABORATECOM2009. B356
http://dx.doi.org/10.410B/ICST.COLLABORATECOM2009. B356

of the Digest Trie. Some information may be recovered when
the key distribution is known in advance by defining a partition
of the key space such that intervals are more narrow where
keys are more frequent.

The Q_Digest, Quantile Digest approach [12] improves the
approximation accuracy of bitvectors by considering intervals
of different sizes and by pairing a counter with each interval,
defining the number of keys belonging to the interval.

A Q_Digest Q = {([ll, UI], count l), ... ([li, Ui], counti) ,
... , ([It,Ut], countt)} is a structure including a set of different
sized intervals, or buckets, where each interval [li, Ui] is paired
with a counter count.. The counter defines the number of
keys belonging to that interval. For the sake of simplicity, in
the following we will suppose that the size of the interval
of the key values is a power of 2. The intervals are defined
by considering a binary partition of the interval of the key
values which is represented by a binary tree. Each leaf of
the tree corresponds to a single value interval, while the size
of the intervals associated to internal nodes increases as their
level in the tree. The interval covering the whole key space is
associated with the root of the tree. The depth of the tree is
log(n), where n is the dimension of the key space.

A Q_digest includes a subset of the intervals defined by
the binary partition. The cardinality of this subset depends
upon a compression parameter k which may be tuned to
balance the complexity of computing the Q_digest, r.s. its
storage requirements, versus the accuracy of the returned
approximation.

[11] suggests to exploit two properties, the Digest Proper
ties, in order to define the intervals which should be inserted in
a Q_Digest. The first one affirms two adjacent intervals with
low counters should be merged. This corresponds to merging
two children of the binary partition tree into their parent node
provided that the counter resulting from adding their counter
and that of the parent node is under a given threshold. In this
way intervals with a too low value are not inserted in the
Q_Digest. The second property asserts that an interval should
not have a too high counter, unless it is a leaf.

If m is the number of keys, and k is the compression
parameter, previous conditions may be defined as follows:

count(n) :::; mfk
count(n) + count(np) + count(ns) > mfk

where n is a node of the binary tree associated with the
QDigest, np , rs. n s is the parent, r.s the sibling of n in the
tree.

The compression algorithm applies the digest properties by
visiting the binary tree bottom-up, starting from its leaves.
The merge of a pair of Q_Digest QI and Q2 defined on
the same value space is computed by defining a Q_digest
Q on the same value space such that each node of Q is
first paired with a counter obtained by adding the counters
of the corresponding intervals in QI, Q2, then by applying
the compression algorithm to it.

Figure 1 shows a Q_Digest defined on a value space [1 ..8]
where the number of values in this space is 18. The leaves of

Map({n})

[3.31 [4,41

4 4

Fig. 1. A Quantile Digest

the trie corresponds to the intervals including a single value
and the counts under the leaves shows the number of keys
with that value. These are the initial values for the counters of
the leaves, while the counters of the internal nodes of the tree
are initially set to O. The Q_digest is obtained by applying
the compression procedure to these initial configuration of the
tree. Figure 1 shows the tree resulting from the compression
where the compression parameter is 3 and the value of mf]:
is 6.

The counter shown inside the nodes are resulting from the
compression. The intervals with a counter equal to 0 are
not included in the Q_Digest. Note that the intervals [1,1]
and [2,2] have been merged because they do not satisfy the
first Digest property. The resulting counter floats till the root
because the merge is recursively applied to the ancestors
nodes. The intervals [3,3] and [4,4] are not merged because
they satisfy the first and the second Digest property. Finally,
intervals [5,5] and [6,6] are merged into their parent node and
the same applies to intervals [7,7] and [8,8], but the merge
process stops at their parent nodes, because the first condition
is satisfied at these nodes.

[11] proves that a Q_Digest constructed with compression
parameter k has size at most 3k and that in a Q_Digest Q
created using a compression parameter factor k, the maximum
error in count of any node is logtl , where (J is the size of the
size of the interval of the value keys and m is the number of
keys.

Let us now consider a range query [l,u] and a Q =
{([h ,ud, countl) ,'" ([li, Ui],counti) , .. . , ([Lt ,Ut], countt)}
An approximation of the number of matches of the range query
may be obtained by as follows:

I: count; : [li, Ui]n[l , u] =1= 0

peer whose identifier is prefixed by I D(n). Distinct mappings
correspond to different choices of these peers.

Among these mappings we will consider those where each
peer manages a single sequence of nodes from its leaf to an
ancestor node on the path to the root of the DDT. These
mappings will be referred in the following as single segment
mappings.

These mappings present several advantages. First of all,
the number of hops between different peers during the query
resolution process and, as a consequence, the overall network
traffic, is reduced. As we will see in the following section,
both the complexity of the join operation and of the routing
tables is reduced as well.

Map({n l, n2}) = M ap({nIl) U Map({n2})

{

p if leaf(n) /\ ID(n) = SHAI(P)
__ q if (--.leaf(n) /\ (Map(Children(n») = q)V

V (--.lea f (n)/\
/\ M ap(C hi ldre n (n » = {q ,p}/\
/\ Choice(p, q,n) = q)

(I)

Eq. (1) shows a general definition of a mapping satisfying
the single segment property. The function maps each leaf
of the DDT to the peer whose SHAI identifier equals the
leaf identifier. Each internal node n with a single child n' ,
is assigned to the peer managing n'. Otherwise, the Choice
Function maps n to one of the peers paired with its children.
Distinct definitions of Choice define different mappings.

Let us consider the segment of nodes assigned to a peer p by
a single segment mapping. The parent of each node assigned
to p, apart from the upper level node, is paired with p itself.
If the upper level node is different from the root, the peer q
managing the parent of the upper level node will be referred
in the following as father peer of p and p will be referred as
child peer of q. Note that, while in the general case a peer may
have a set of father peer, the single segment mapping defines
at most a father peer for each peer of the DDT.

[11] defines a single segment mapping where each internal
node n is assigned to the peer storing the maximum key
choosen among the peers paired with the children of n. This
mapping is guided by the digest information stored at the
nodes of the DDT:

The corresponding Choice function is shown in the Eq.2.

In this case the third parameter, i.e. the reference to the
logical node which has to be mapped, is not exploited. It is
worth noticing that while this approach is straightforward in
[11] because the maximum function returns one of the keys
paired with the peers, the choice is more complex when digest
like the Bitvector or the QDigest are exploited.

Fig. 2 show an example of this mapping. The value shown
inside each node is the digest paired with that node, while
the peer managing the node is defined close to the node. Note

Finally it is worth noticing that each compression step
introduces a degree of approximation since it merges two
intervals into a larger one. The corresponding counter exactly
defines the number of values included in that interval, but
it cannot describe the distribution of the values within the
interval. On the other way round, the information returned by
the counter is more accurate of that contained in the bitvector
and can be exploited to decide more accurately if a subtree
should be visited.

V. THE MAPPING FUNCTIONS

According to the prefix condition introduced in the Section
III, each internal node n of the DDT may be paired with any

Digital Object Identifier: 10.4108I/CST.COLLABORATECOM2009.8356
http://dx.doi.org/10.4108/ICST.COLLABORATECOM2009.8356

{

p if key(p) ~ ke y(q)
Choice(p, q,n) =

q other wise
(2)

Fig. 2. A Digest Based Mapping

that each peer Pi , i = 1, .., 5 manages a sequence of nodes
starting from its leaf up to an ancestor node. Each internal
node is assigned to the peer publishing the key corresponding
to the digest paired with that node. Note also that the peer
P2 manages each node on the path form its leaf to the root,
because it publishes the maximum key.

The main drawback of this approach is that the resulting
mapping generally does not balance the load among the peers.
For instance, in the mapping of Fig. 2, the peer publishing the
maximum key manages any node on the path from its leaf to
the root of the trie.

The definition of a mapping taking load balancing into
account is a true challenge, because it should balance the com
plexity of the mapping function with the benefits introduced
by a proper load balancing.

First of all, a proper definition of the load of a peer
is needed. A straightforward solution is to define the load
of a peer p as the amount of DDT nodes assigned to it.
Nevertheless, this approach does not take into account that
some nodes assigned to p may have a single child managed
by p itself. Instead, we will consider a more refined definition
taking into account the number of child peers of p, since this
value approximates the amount of queries which p should
manage.

A simple heuristics to define a mapping balancing the load
is defined as follows

Load(p,I) = I{nk : nk E Path(leaf(ID(p) ,I) /\

/\Sibling(n k) =f ..l}1

{

p if 1= level(n) /\

C h
. () _ Load(p,1- 1) :::; Load(q, I-I)

otce p,q,n -

q otherwis e

Given a peer p, let us consider the path from Leaf(p) to its
ancestor of levell and suppose that each node on this path has
been assigned to p. The load of a p on this path, Load(p,l),
is defined as the cardinality of the set of all the nodes on
the path which have a sibling node in the DDT. It is worth
noticing that each sibling, if existent, is surely paired with a
peer different from p. The function Choice(p,q,n), given the
peers p and q and a node n at level l belonging to the path
from Leaf(p), r.s. Leaf(q) to the root selects between them
the peer with the lowest load at level l - 1.

Digital Object Identifier: 10.4108I/CST.COLLABORATECOM2009.8356
http://dx.doi.org/10.4108/ICST.COLLABORATECOM2009.8356

o P5

0: ~O P4
/ /~

O P5 O P4 U P3

0 / cf /~
P5 P4 O P3 0 P2

0/ / / />:
P5 0 P4 0 P3 P2 0 0 P1

Fig. 3. A Load Balancing Mapping

Fig.3 shows an example of this mapping. Note, for instance
that the Choice Function chooses peer P3 , at level 2 between
P2 P3 , because its load is 0, while the load of P2 is 1.
Furthermore, the load of Ps is 1 even if Ps manages all the
nodes form its leaf to the root since each node on this path
has a single child which is paired with Ps itself.

A routing table corresponding to a single segment mapping
has at most h entries, where h is the height of the DDT and
presents the following structure. Each entry of the routing table
of a peer p corresponds to a node n of the DDT and stores the
digest paired with that node and may store a pointer to a child
peer of p if a child of n is managed by a peer different from
p. The digest paired with a node summarizes the information
stored in the subtree rooted at that node.

VI. THE DDT OPERATIONS

This section describes the main operations supported by
Digest Trie, i.e. join , leave, find and update key. The first two
are exploited when a peer joins , r.s. leaves the DDT. The
search of k values belonging to a given range is defined by
the find operation, while change key updates the digests paired
with the nodes of the trie when a peer modifies its key. Each
operation will be described in more details in the following
sections.

A. Join

Before joining the DDT, each peer gets a logical identifier
which is assigned to it by exploiting the SHAI hash function of
the underlying DHT. In this way p logically joins the DDT
at the leaf l of the DDT such as SHAl(p) = I D(l) .

The joining process requires two different steps. The first
one detects the segment of internal nodes paired by the
mapping function to the joining peer p. The second one
updates the digest information on the path from Leaf(p) to
the root by considering key(p).

In the first step, p first detects the maximum prefix M P
shared between its identifier and those of the peers belonging
to the DDT, afterwards the least common ancestor, LCA, that
is the node of the DDT identified by M P is detected. Note
that more than one peer may share M P with p and that one
of these peers manages the LCA. Any node on the path from
Leaf(p) to LCA is managed by p. p than should contact the
peer q paired with the LCA to decide which nodes on the
path from LCA to the root should be managed by itself. Note

that q acts as a bootstrap peer for p. p contacts q and they
apply the Choice function defined by the mapping to decide
which of them should manage the common segment of internal
nodes. If p is choosen by the choice function, the process is
recursively repeated by considering the father peer of q until
the choice function chooses a peer different from p. During
this process p builds its routing table and any peer involved
in the process updates its routing table.

The underlying D HT is exploited to detect the bootstrap
peer. As shown in [11], one of the peers sharing the maximum
prefix with p is definitely either the successor or the predeces
sor of p in the DHT. Note that the predecessor/successor of p
in the DHT may be detected by exploiting the routing tables
of the DHT which are built at the underlying level when
the peers join the DHT. Hence p contacts its successor(or
its predecessor) in the DHT. If this peer is not paired with
the LCA it forwards the request of p to its parent and the
forwarding is carried on until the peer q paired with the LCA
is found.

The final step of the join requires the update of the digests
paired with the nodes on the path from Leaf(p) to the root
of the DDT. First p updates the digest of the nodes assigned
to it by considering its key, starting from Leaf(p) and going
back up the tree until the new digest differs from the previous
one. If the update reaches its upper level node, p notifies the
digest associated to this node to its father peer and the update
procedure is recursively applied by the ancestors of p until the
updated digest equals the old one.

It is worth noticing that the level reached by the update
procedure increases as the accuracy of the digest. On the other
hand, a more accurate digest improves the search process, by
decreasing the number of nodes visited to satisfy the query.

Operation Analysis: the first step of the join operation
involves localizing the LCA. This operation is performed
through the DHT substrate with a worst-case of O(log N)
exchanged messages with other peers. The second step of the
join requires checking of the mapping function and of the
digest update. Here too we at most contact all the peers along
the path to the root node. The maximum number of contacted
peers is thus h = log N, and the overall worst case complexity
of the join operation is O(log N).

B. Find

We consider queries like Find(l ::; x ::; u, k), where l, r.s.
u is the lower, r.s. the upper bound of the range defined by
the query and k is the number of required values. A query q
submitted by a peer p, i.e.the query peer, is propagated bottom
up in the DDT, starting from the leaf corresponding to p. The
Find operation exploits a fully distributed algorithm where no
central entity coordinating the search of query matches does
exist. As a consequence, each node receiving the query should
autonomously decide when the visit has to be stopped. It is
worth noticing that each node whose key k matches the query
directly sends k to the query peer p. This avoid the definition of
a backtracking mechanism which should considerably increase
the traffic on the overlay. On the other way round, each node

Digital Object Identifier: 10.41OB/ICST.COLLABORATECOM2009. B356
http://dx.doi.org/10.410B/ICST.COLLABORATECOM2009.B356

should autonomously decide if the query should be stopped,
without receiving the result of the match process form its
neighbours.

Let us suppose that q reaches a peer t which is paired with
a segment s of nodes spanning from level l to level l +k of the
DDT. t first order the subtrees rooted at the nodes belonging
to s according to some strategy, then exploits the digest paired
with the subtrees to estimate the number of matches for the
query which may be found in each subtree.

The visit of the DDT stops when the number of estimated
matches exceeds k. It is worth noticing that t propagates the
query to its father peer if and only if the number of estimated
matches in its subtrees is ::; k. Note that the goal of this
strategy is to propagate the query to the upper levels of the
DDT only when this is really necessary thus avoiding that
the upper levels of the tree become a bottleneck.

Furthermore, a proper order of the subtrees rooted at the
nodes in s should be defined in order to minimize the number
of visited nodes and, as a consequence, the network traffic.
This ordering should take into account both the number of
nodes of the subtree and the number of matches for the query.

Finally, it is worth noticing that the level of approximation
introduced by the digest may greatly affect the search process.
As a matter of fact an under estimate implies that the query
is propagated to the upper level of the trees even when this
shouldn't be necessary, thus creating a bottleneck at the upper
levels of the tree. On the other hand, a over estimate may
stop the search too early, before k matches are really found.
To face the latter problem, the peer stopping S P the search
process sends to the query peer QP a stop message which
notifies to QP the point of the DDT where the search could
be resumed. QP may later resume the search process, if the
number of matches for the query received is ::; k. Note that a
proper algorithm should be defined in this case, because the
structure of the DDmay be changed due to the dinamicity in
the meanwhile.

Algorithm 1 shows the pseudo code of the Find.
Operation Analysis: the find operation involves a dis

tributed exploration of the trie. The exploration process ex
ecutes a leaf-to-root visit, at each level starting an exploration
of potentially interesting sub-tries. The overall number of
explored peers depends on the digest information at the nodes.
The more accurate the estimate provided by the aggregation
function, the lesser is the amount of peers explored. In the
worst case a DDT find requires O(N) messages.

C. Leave

When a DDT peer leaves the overlay voluntarely, it first
invokes the leave operation. This operation transfers the local
Routing Table of the leaving peer to its parent peer which
integrates the received information with its routing table and
propagates to its children the update. Otherwise, if the peer
leaves unexpectedly the network due to an unexpected crash,
the peers which are connected to it in the DDT overlay
detect the failure and they exploit the underlaying DHT to fix
the DDT consistency. Each peer performs a join procedure

Algorithm 1 Find
procedure N.Find(Q, k, QueryNode, Dir)

if M atches(Q, LocalKey) then
send(QueryNode, N.Key)
k+-k-1
if k = 0 then

exit
for all Son E Sons do

Ext(Son) +- Qn Digest(Son)
if (dir =' down') then

for (i = 1, Length(Sons)) do
if Ext(Son(i)) i= 0 then

send (Sons(i) , Q, k, QueryNode,' down')
else

SSons +- Sort ({Sons: Ext(Son) i= O})
for i = 1, ISons I do

send (SSons(i) , Q, k,QueryNode,' down')
k = k - Ext(i);
if k < 0 then

send (QueryNode,' SearchStop')
exit

if (k > 0 and -,N.isRoot()) then
send (ParentNode, Q, k, QueryNode,' up')

to localize its least common ancestor in the network thus
updating the mapping and the digest functions. The detailed
description of the leave operation may be found in [13].

Operation Analysis: if we consider a volunteer leave, the
cost analysis is the same as the join operation. DDT checks
the mapping function to verify the structure consistency and
executes the digest update, and at most O(log N) messages
are exchanged among peers. Otherwise, if a peer unexpectedly
leaves the network, the trie can get disconnected. The DHT
substrate is used to localizes the LCA peers needed to recon
nect the trie (they are at most log N), each one is found using
at most O(log N) messages. Trie consistency can then be
restored with a function mapping checking. The overall worst
case complexity of the leave operation is thus O(log N 2) .

D. Change Key

When a peer changes the value of its key, the digests paired
with a subset of the peers on the path from its leaf to the root
may be updated. The procedure is similar to the join procedure
performed when a new peer enters the overlay, which has been
discussed in Sect. VI-A.

Operation Analysis: a resource change involves in the
worst case both a digest update and a mapping reorganization.
As for the join, a path-visit toward the root of the distributed
trie is needed. Therefore the worst-case complexity of the
change is O(log N) messages.

VII. EXPERIMENTAL RESULTS

This section describes and evaluates a prototype of DDT
developed through the OverlayWeaver toolkit, OW [14].

OW is an overlay construction toolkit which provides a
common high level API to develop distributed services.
The architecture of the toolkit is decomposed into multiple
components, the routing driver, the routing algorithm, the

Digital Object Identifier: 10.41OB/ICST. COLLABORATECOM2009. B356
http://dx.doi.org/10.410BI/CST.COLLABORATECOM2009.B356

messaging and the directory service. It provides multiple
routing algorithms for different D HTs and enables a large
scale emulation with a fair comparison between algorithms
The high level functionalities defined by OW facilitates both
the implementation and the evaluation through an emulation
of DDT.

The main goals of the experiments has been the evaluation
of the following aspects of the DDT:

• Analysis of the Digest Functions
• Evaluation of the Query Load on the Root
• Analysis of the System in presence of Data Dinamicity

The test bed is based on 1,000 virtual nodes of an emulated
network. The data distribution among the peers follows a
standard Zipf law, where the keys domain is [0, 100) and the
density of the keys is maximal in the left part of the key
domain.

The same Zipf distribution has been exploited to generate
the queries. A query k:[a, b] is defined by the following
parameters:

• k the minimum number of resources required by the
query;

• a, rs. , b is the lower, r.s. the upper bound of query;

Each query k:[a,b] is generated according to the following
schema:

• a is generated by the inverted standard Zipf law in the
domain [0, 100)

• b = a + c where c is uniformly selected in the domain
(a, 100)

• k = a x [F(b) - F(a)], where F is the Zipf CDF and
a E {1,~,~}

A. Analysis of the Digest Functions

This test case analyzes the different digest exploited by
DDT. We remark that the digest function has an important
role in the discovery process to prune useless branches of
the tree. The test is executed as follows. 100 nodes have
been randomly selected, afterward each node submits a query
generated according to the pattern previously described. At the
end of search process we compute, for each query, the numbers
of peers which have been involved in the query resolution and
the number of matches collected for the query. This experiment
has been executed for a = 1,~,~. The effectiveness of the
Digest may be measured by considering the average number
of peers involved in the query resolution vs. the number of
collected results.

The results of this test are shown in Fig. 4 and in Fig.
5. In Fig.4 the X axis corresponds to the a parameter
which determines the minimum number of resources required
by the query, while the Y axis reports, for each value of
a, the average number of peers which are involved in the
search process. The results are reported with respect to the
Digest Functions introduced in the previous sections, i.e, the
Maximum, the Bitvector and the Q-Digest. The Bitvector
is defined by selecting 10 subintervals in the key domain
[0, 100) such that the subdivision takes into account the Zipf

Explored Peers Root Load

_ QDIGEST

-.
0 0 /2 0 / 4

.0, .63"'0 26 . 1 5~ 1 3.79%

28 ,17 % 17.25"- 9 ,9 7~';

1 6 . 2 9~c. 8.6 0':'0 -l . 3 2'?~

30 %

25%..,.~ 20 %" . ,.
~ c ~

~ ~ g 15%
<I _ cJ
'J'. 0 10 %

.l!
5%

0 %
81:97 98 :99

88 :89 4
74 :8 6

3D 48 18

_ MAX 17% 26 % 16% 25 %
_ BV

16% 26 % 16% 26 %

_ QDIGEST 16% 26 % 15% 25%

94 :98

26

19 %

18 %

16%

Fig. 4. Aggregate Functions: number of peers involved in the search process

Query Sati sfaction
21 0,0000

1 9 0 .0~'; .-..g 17 0.00".

~~Z
g: ~ 15 0 ,00%

~.. ..,
~ 13 0.00"0

•11 0.00'?o

90 .00".
0 0 / 2 0 / 4

i_ MAX 13 8.50% 165 .S7% 1 70 .99°0

I_ BV I 27.7"""!'o 16S.59'?o 1 76 .54 "!'o

I_ QDIGEST 11 7.0 0"- 1 25 . 3 0~o 125.68%

Fig. 5. Aggregate Functions: Average of query satisfaction

distribution of the keys (interval division points at 40, 50, 60,
70, 80, 85, 90, 93, 96, 100). Note that this approach requires
a priori knowledge of the distribution of the keys. As far
ad concerns the Q-Digest, the only parameter to fix is the
compress factor whose value is 100. Note that in this case
the definition of the digest does not require the knowledge
of the resource distribution function. The experiment show
the relevant impact of the aggregation function on the cost
of the DDT find operation. The find with a Q-Digest function
explores approximately 16 peers out of 1000. Although a very
preliminary result, the experimental complexity looks much
lower than our worst-case expectation O(N).

The second test analyzes the query satisfaction, i.e. the av
erage number of matches retrieved for each query, in the same
test scenario. As a matter of fact, a digest may underestimate
the number of matches for the query that are present in a
subtree. when this happens, the number of matches returned
to the query node is larger than the requested k. In our
experiments, the query satisfaction exceeds 100% for all the
digest functions, see Figure 5. This means that all the digest
functions we studied exhibit some degree of underestimation.

On the other way round, the Q-Digest although exceeding
k matches, exhibits about 20% less matches than the other di
gests. Thus Q-digest improves the ratio between peers involved
in the search process and the number of retrieved matches. Q
Digest improves the search operation by decreasing the amount

Digital Object Identifier: 10.4108I1CST.COLLABORATECOM2009.8356

http://dx.doi.orgI10.41081ICST.COLLABORATECOM2009.8356

Fig. 6. Control Traffic: traffic load of DDT root peer

of involved peers, and by increasing the relative amount of
retrieved resources. We can observe that Q-digest, with respect
to the other digest functions, for all values of a answers the
queries contacting at least 50% less nodes. We can conclude
that the a self-adapting characteristics of the Q-Digest with
respect to the Bitvector returns better results in the search
process.

B. Analysis of Query Load on the Root

One of the most critical points of the DTT proposal is the
impact of the traffic generated by the query resolution on the
peer which manages the root node. In order to investigate
this aspect we have analyzed the average number of queries
which reach the peer managing the root of the DDT, for
different query configuration and different digests. The test
configuration is the same defined in the previous section. We
have selected 100 nodes at random, each node submits the 5
queries which are shown in the histogram shown in Fig. 6.
The queries are generated with the same distribution defined
previously and with a = !. The goal of the experiment is
to analyze, for each digest function, the amount of queries
which reach the peer which manages the root of the DDT.
The histogram shows, for each query which is submitted by
the 100 nodes, the percentage of the queries which reaches
the peer managing the root.

The test shows that, for all digest, the amount of query load
on the peer which manages the root is never larger than 26%
with an average of 20%. This result confirms that even in the
case where the approximation of the digest may result too
coarse, i.e. the Maximum or Bitvector functions, the load of
root node is widely acceptable.

C. Analysis of Dinamicity

The last test analyzes the impact of dynamic due to key
updates in the DDT. As we have described in section VI
the update of a key generally requires the propagation of the
new digest information by triggering the update of the digests
paired with a subset of the DDT nodes.

The test analyzes the behavior of DTT under frequent
updates. The environment configuration is the same of the

gives the better trade-off so far between query efficiency and
update overhead. A thorough understanding of the trade-offs
implied in the choice of the mapping and digest functions
will require further study. We are also currently extending the
DDT to support multi-attribute range queries by exploiting a
space filling based approach [9] to define a linearization of the
multi attribute key space. The resulting space is then mapped
to the DDT by exploiting the techniques proposed in this
paper.0%

0%

81% 19%

1 0 0% 0%

0%

_ MAX

20%

(II SO%. .
"R. 5 ~ 6 0%" ~
O'? 4 0%

100%

1 20% r---------------

Numberof Peers involved

VIII. CONCLUSIONS

This paper proposes the Distributed Digest Trie, a hier
archical distributed data structure supporting range queries
in P2P systems. The DDT structure is built on the top of
a DHT. The DDT exploits both a Mapping Function to
map the nodes of the logical tree to the peers and a set of
Digest Functions to aggregate the keys published by them. We
have defined and evaluated three different Digest Functions,
namely Maximum, Bitvector and Q-Digest. DDT supports the
execution of range queries by exploiting the digest information
to drive the search process only toward those peers where
matches can be found. The experimental results confirm the
effectiveness of our approach. As far as it concerns the ratio
between the number of nodes visited by the search process and
those updated when a key is modified, the Q-Digest function

previous section, in addition we have generated 100 key
updates where the updated values are generated by following
the same Zipf-law distribution shown in the previous section.
Each update is submitted by one peer which is selected
randomly. The test analysis the number of peers involved into
stabilization process. The emulation considers 1,000 peers and
as a consequence the maximum height of DDT is 10. The
behavior of the three digest functions presented in the previous
sections is analyzed.

The histogram presented in Fig. 7 reports the number of
updates which involves a number of peers defined by a set of
ranges. For instance, the 80% of the updates involve between 1
and 3 peers when the Bitvector is exploited. It is worth noticing
the trade off between the degree of approximation introduced
by the digest and the behavior of the update operation. Even if
the Max and Bitvector digest nail the updates with the average
of 90% under 4 peers, the Q-Digest presents an acceptable
behaviour in presence of keys updates (73% under 7 peers
about which the 14% under 4 peers). On the other way round,
the number of updates required by the Q-Digest is inevitably
larger than those required by other digests because its accuracy
is larger. As a conclusion, we can confirm that even if the
performance of the Q-Digest is worse with respect to the others
digest when the updates are considered, it represents the best
compromise when considering the performance of the search
vs. the update operations.

Fig. 7. Analysis of Key Updates

• QDIGEST 14% 59% 27%

ACKNOWLEDGMENT

The authors acknowledge the support of XtreemOS, Project
FP6-033576 , Building and Promoting a Linux-based Operating
System to Support Virtual Organizations for Next Generation
Grids (2006-2010) .

REFERENCES

[I) RRanjan, A.Harwood, and RBuyya, "Peer-to-Peer Based Resource
Discovery in Global Grids: A Tutorial," IEEE Communications Surveys
and Tutorials, vol. 10, no. 2, pp. 6-33, 2008.

[2) 1. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, F. M. Kaashoek,
F. Dabek, and H. Balakrishnan, "Chord: a scalable peer-to-peer lookup
protocol for internet applications," IEEE/ACM Transactions on Network
ing (TON), vol. II , no. I, pp. 17-32 , February 2003.

[3) S. Ratnasamy, P. Francis, M. Handley, R Karp, and S. Schenker, "A
scalable content-addressable network," in SIGCOMM '01: Proceedings
of the 2001 conference on Applications, technologies, architectures, and
protocols fo r computer communications . New York, NY, USA: ACM,
2001, pp. 161-172.

[4) H. V. Jagadish, B. C. Ooi , and Q. H. Vu, "Baton: a balanced tree structure
for peer-to-peer networks," in Proceedings of the 31st Internat ional
Conference on Very Large Data Bases (VLDB '05). VLDB Endowment,
2005, pp. 661-672.

[5) M. Marzolla, M. Mordacchini, and S. Orlando, "Tree vector indexes:
efficient range queries for dynamic content on peer-to-peer networks," in
Parallel, Distributed, and Network-Based Processing, 2006. PDP 2006.
14th Euromicro International Conference on, 2006, pp. 8 pp.+.

[6) H. Sun, J. Huai, Y. Liu, and R. Buyya, "Rct: A distributed tree for
supporting efficient range and multi-attribute queries in grid computing,"
Future Gener. Comput. Syst., vol. 24, no. 7, pp. 631-643, 2008.

[7) J. Gao and P. Steenkiste, "An adaptive protocol for efficient support of
range queries in dht-based systems," in Proceedings of the 12th IEEE
international conference on network protocols (ICNP '04), 2004, pp.
239-250.

[8) M. Cai, M. Frank, J. Chen, and P. Szekely, "Maan: a multi-attribute
addressable network for grid information services," in Grid Computing,
2003. Proceedings. Fourth International Workshop on, 2003, pp. 184
191.

[9) C. Schmidt and M. Parashar, "Enabling flexible queries with guarantees
in P2P systems," Internet Computing, IEEE, vol. 8, no. 3, pp. 19-26,
May 2004.

[10) P. Maymounkov and D. Maziares, "Kadernlia: A peer-to-peer informa
tion system based on the xor metric," in Peer-to-Peer Systems . Springer,
2002, pp. 53-65.

[II) G. Varghese and G. M. Bhagwan, P.and Voelker, "Cone: Augmenting
dhts to support distributed resource discovery," in 19th ACM Symposium
on Operating Systems Principles, SOSP poster session, 2003.

[12) N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri, "Medians and
beyond: new aggregation techniques for sensor networks," in SenSys
'04: Proceedings of the 2nd international conference on Embedded
networked sensor systems. New York, NY, USA: ACM, 2004, pp.
239-249.

[13) D. Carfi, "Xcone: Range query in sistemi p2p," Master's thesis, Univer
sity of Pisa, December 2008.

[14) K. Shudo, Y. Tanaka, and S. Sekiguchi, "Overlay weaver: An overlay
construction toolkit," Computer Communications, vol. 31, no. 2, pp.
402-412, February 2008, framework available at http://overlayweaver.
sourceforge.net.

Digital Object Identifier: 1O.4108/1CST.COLLABORA TECOM2009.8356

http://dx.doi.orgI10.4108/ICST.COLLABORATECOM2009.8356

